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Abstract

Chemical reaction networks, i.e. a set of chemical compounds and a system
of reactions that inter-convert them, are a key concept in many research areas
of Chemistry or Biology. They have successfully been applied to study such di-
verse systems as combustion and petro-chemical processes, atmosphere chemistry,
metabolic networks or the possible chemical routes to the first life forms.

The objective of this diploma thesis was to set up a rule-based simulation plat-
form to explore the topological features and the dynamic behavior of chemical
reaction networks that unfold in time. To achieve this goal an algebraic chem-
istry framework, which models molecules as labeled graphs and reactions as graph
rewrite rules, was combined with a method for the on-the fly calculation of physico-
chemical properties of the molecules. This strategy allows on demand computation
of e.g. reaction rates for novel chemical compounds that emerge during the simu-
lation.

The chemical reaction networks are assembled in an incremental way starting
from a set of molecules and a set of reactions. To avoid combinatorial explosion
in terms of network size each expansion step is followed by a shrinking step. For
the pruning step a kinetic filtering strategy based on Gillespie type stochastic
simulation of the network was developed.

The computational framework was applied to study (i) a network with only a
single reaction rule, i.e. the Diels-Alder reaction, that shows rapid combinatorial
explosion and (ii) the Formose reaction network, an auto-catalytic reaction net-
work producing sugars from formaldehyde.

Keywords: Algebraic Chemistry, Graph grammar, Rule-based Simulation, Gille-
spie Algorithm, SSA, Reaction Networks, Prebiotic Chemistry, Concentration
Sampling Network Generator, Reaction Rate Calculation
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1. Introduction

1.1. Status quo

Computer simulations have undeniably become important instruments to help scientists
and engineers implement their ideas and proof theories. Though the computer is a
mere appendage in cases of practical work it is getting much higher attention in science
especially theoretical fields. An obvious reason is for instance the time and cost saving
run of a simulation compared to providing a laboratory with test equipment and samples
and the time and manpower to bring it to expected results.

Working in the field of theoretical chemistry we have a special interest in compu-
tationally predicting chemical behavior as found in single molecules or more often in
chemical reactions being nothing else than the interaction between molecules. In fact
there are simulation programs available for certain applications [14, 29, 30]. However,
they all struggle with the complexity of the systems and processes which are intrinsic to
even primitive biological conditions. Although individual aspects like thermodynamics
or spatial organization and partial components are already taken into account by own
specific models the coherent view onto the whole is still not the scope of any approach.
Nevertheless these attempts have successfully shown their qualification when asking for
modeled properties that can be decoupled from physical detail. This means that such
approaches are absolutely sufficient as long as the embedded rules of the models do not
require detailed knowledge of the underlying chemistry.

Though if we now want to take a look at evolutionary aspects of molecule networks
or metabolic pathways we assume that the chemistry becomes an inevitably important
part of the describing computer model. Thus it needs to incorporate chemical ground
rules and constraints like conservation of mass and conservation or dissipation of energy
respectively. Of course this does not mean we want all facets of chemistry to be in-
cluded in a computer model as it is not yet feasible to simulate nature in all its details.
Nevertheless we doubtlessly need to embark on a new strategy for modeling artificial
chemistries.

1.2. Motivation

So why are we interested in evolutionary aspects of chemistry? = We do not want to
argue the inherent curiosity of humans. Rather, there were many attempts in the past
searching for the origin of organic chemistry and furthermore searching for the origin of
life on earth. All these experiments have in common that conditions, or at least parts of
it, are reproduced which might have prevailed on the early earth and in its atmosphere
respectively. In this simulated world small molecules are provided in order to react with
each other and with the environment. The output of such an experiment is then filtered
for molecules which are known of playing important roles in organic life on earth, like
for instance amino acids, carboxylic acids, purines and sugars. Also of great importance
are groups of molecules forming cycles with respect to their chemical relationship, i.e.
have the capability to establish self-replicating cycles.
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Nonetheless, there are of course crucial differences between all the experiments. The
differences are the start set of molecules and the theories to be proven. The molecules
at the beginning of the scenarios are all small and not complex so it is very likely
that they were present at that time in the given environment. Coming to the various
theories we also have to mention the milieu every theory proposes. Though Miller and
Urey [1] experimented with inorganic molecules in a reduced hot atmosphere (figure
1), Wächtershäuser suggested in his iron-sulphur world hypotheses [2] that prebiotic
synthesis of organic molecules could have taken place on the surface of iron-sulphur
minerals. His theory also fits to geological observations made in the near of deep-sea
volcanoes and black smokers, the habitats for some sorts of extremophiles. Furthermore
Wächtershäuser’s theory covers proposals for the polymerization processes of prebiotic
molecules.

Polymerization of molecules is considered to be important in prebiotic chemistry
as many stakeholders of present biological systems are macromolecules. Proteins and
nucleic acids for instance are formed by polymerization and condensation of smaller
molecules like amino acids and nucleotides. The polymerization process consumes energy
and as ATP (adenosine triphosphate, the common energy transfer unit in biochemistry)
is produced only by enzymes it could not be in charge of the prebiotic energy transfer.
In the iron-sulphur world hypotheses anaerobic redox reactions reliably provide energy.

Figure 1: Configuration of the famous Miller-Urey experiment. Conditions of the early
earth are simulated by a source of hot water, a primitive atmosphere contain-
ing gases supposed to having been present and indispensable for an emerging
prebiotic chemistry. Energy is brought into the system by artificially generated
electrical sparks.

Another discussion is present these days whether the ”origin of life” follows suggestions
of the RNA world (also known as ”Replication first”) hypotheses or the ”Metabolism
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first” hypotheses1. The latter proposes emerging metabolic cycles like for example the
(reductive) citric acid cycle to mark the early beginnings of life and says that metabolism
is more likely to establish than forming more complex RNA molecules as suggested in
the former hypotheses. In contrast the RNA world hypotheses claims replication and
storage of information to be life’s origin whereas experiments showed that already small
RNA molecules and ribozymes (the RNA pendant of enzymes) can store and replicate
(genetic) information.

Our objective now is to computationally view chemical aspects of the mentioned types
of theories and hypotheses to be able to either resume some discussions and stop others
or to give new and probably unconsidered input to established discussions.

1.3. Solution statement

Below we describe a computational approach that covers the above mentioned scenarios
of chemical reaction networks and related proposals.

The core idea of our approach is the transformation of the chemical problem into a
graph-based artificial chemistry. In this toy universe (this term was introduced by [6])
molecules are modeled as mathematical undirected graphs, comparable with adjacency
matrices in which atoms are labeled vertices and bonds between atoms are labeled edges
connecting two vertices.
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4 3
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1 2 3 4 5 6 7

1 0 1 0 1 1 1 0

2 1 0 2 0 0 0 1

3 0 2 0 0 0 0 0

4 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0

6 1 0 0 0 0 0 0

7 0 1 0 0 0 0 0
Acetaldehyde

Figure 2: Numbered molecule graph and an adjacency matrix like connection table of
acetaldehyde (systematic ethanal). The matrix is redundant, which means
mirrored on the main diagonal, and not zero compressed.

Furthermore chemical reactions are modeled as graph rewrite rules [7] (an example is
given in figure 3). A graph rewrite rule plays the role of the reaction in the sense of taking
one or more molecules as input and transforming this input into one or more output
molecules. The inputs for such a rewrite rule are the educts of the chemical reaction
as well as environmental conditions like catalysts. The output, however, represents the

1A short summary can be found in [3].
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products of the chemical reaction. The process of the chemical reaction itself is now
modeled by applying the graph rewrite rule to the given educt molecules.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

Pattern Context Replacement

Figure 3: Example of a Diels-Alder reaction at the top of the figure and the corresponding
graph rewrite rule in the bottom.

Since single chemical reactions and hence single graph rewrite applications are only
of limited interest with respect to our intention we expand this system to an extent so
that no longer single reactions but whole reaction networks are modeled. This is done
by unspecific application of all available graph rewrite rules to all available molecule
graphs. We call this step ”network expansion” as the network, consisting of molecule
species and reactions between all known molecules, is expanded by such a step = new
reactions and also new molecule species are formed and added to the network.

The described network expansion alone would induce a combinatorial explosion in
terms of network size in more or less short time, depending on the initial set of molecules
and on the diversity and number of graph rewrite rules, as observed by [4, 8] and [9]. Thus
to avoid combinatorial explosion in our network generator we apply a network shrinking
step after each expansion step according to [4]. As pruning strategy we suggest the
simulation of the reaction kinetics in the chemical reaction network because this best
reflects the evolutionary aspects of the distribution of species concentrations in molecule
networks. Subsequently molecule species with the lowest concentration can be removed
from the network.

For simulating the chemical kinetics of the reaction network a stochastic simulation
method, the Monte Carlo type Stochastic Simulation Algorithm SSA, introduced by
Daniel T. Gillespie [5] is used. Therefore our reaction system is assumed to be well-stirred
and the dynamical behavior of its molecules shall exhibit some degree of randomness.

As a prerequisite for simulating the concentration distribution of the network molecules
the reaction rates of the chemical reactions in the network need to be known. Since real
reaction rates can not yet be calculated ab initio, but only measured in physical experi-
ments, we use a way of consistently estimating the rates by using quantum mechanical
calculating programs1.

1See appendix D for details on the used quantum mechanical software package.
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1.4. Applications

Like mentioned above chemical reaction networks can be found in various fields of na-
ture. Similarly applications in those fields are present and could need computational
assistance. This assistance accounts for simulating evolving networks whereas the ini-
tial set of molecule species and reactions and constraints have been transformed into a
structure our approach or rather formalism can handle them.

Below examples for various related fields are listed:

� Biochemistry

– Metabolic pathways

– Enzyme-catalyzed reactions

– Gene transcription

� Petro Chemistry

– Petro chemical refining

– Combustion reactions

– Polymerization reactions

� Atmospheric Chemistry

– Gas phase reactions

– Photochemistry

� Cell Biology

– Signal transduction

– Auto-regulation

– Metabolic networks
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2. Theory

In the following sections we outline the theories our presented thesis relies on. Starting
with basics of Cheminformatics and a general theory of chemical reaction networks we
go further into detail of graph theory, stochastic simulation and chemical kinetics.

2.1. Cheminformatics

2.1.1. Introduction

Cheminformatics or Chemoinformatics is defined [34] as the use of computer and in-
formational techniques, applied to a range of problems in the field of chemistry. These
techniques are furthermore used for calculating, predicting and changing molecular prop-
erties computationally and are even used in the process of drug discovery in pharmaceu-
tical chemistry for instance.

As the word Cheminformatics implies it combines the scientific working fields of chem-
istry and computer science and is nowadays often understood as a branch of theoretical
chemistry. Although Cheminformatics is a relative young term its basic ideas and con-
cepts are nonetheless known for many decades now, however under other titles such as
computational chemistry or chemical graph theory. Therefore the latter is still one of the
main topics Cheminformatics deals with. Furthermore it helps establishing and extend-
ing the chemical space. The Chemical space can be thought of all known and possible
molecules spanning a space in which chemical reactions allow us to move among these
molecules. By extending the scope of Cheminformatics so that the interest in even big-
ger molecules like nucleic acids and proteins becomes feasible another scientific subject
was established known as Bioinformatics.

2.1.2. Applications

In the following sections we describe prominent applications of Cheminformatics and Bioin-
formatics.

Storage and retrieval

One primary application of Cheminformatics is the storage and processing of information
relating to chemical compounds. In this sense chemical databases have been established,
specifically designed to store chemical information. This information covers chemical and
crystal structures, spectra of molecules or atoms, reactions and syntheses and of course
thermo physical data. For the preceding retrieval of all kinds of storable information
more or less complex experiments including various measuring instruments are set up.

The retrieval from the Cheminformatics point of view starts with reading the raw data
from the experiments instruments. The used instruments and the retrieving software
either need to comply with the same defined interfaces. This is required in order to
enable data exchange in possibly both directions and interpreting the data in a defined
way. The retrieved data is then processed to extract the needed information. Some
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properties, such as the inter atomic distance, can be directly accessed from the raw
data and potentially need to be converted into another value range. Other properties,
however, have to be calculated from measurements using specific models. When the
required chemical attributes are available the data can be stored finally.

 !

"#$%&'()*+,+&#'

-./0$&10'+

20,*3$010'+ 4+#$,(0

Figure 4: Schema of a chemical experiment depicting the way from the actual experiment
towards the measurements and finally to the data storage.

When storing the chemical data certain considerations have to be made. The first
question about what parts of the chemical information should be stored was handled by
the previous steps of selection, conversion and extraction. We only process the attributes
we really are interested in, which is why our first question has already been answered.
Another question is what format the data should be saved as. In practice two main
concepts have proven true. On the one hand relational databases, mainly MySQL and
Oracle, are extensively used in organizations and companies to store such kind and
amount of data. On the other hand there are still applications and databases in the
fields of Cheminformatics and Bioinformatics that use a flat file format, for instance the
FASTA database in Bioinformatics. Nevertheless applications encapsulate those storage
formats so that the relational access semantics are the same for both underlying worlds.
More technical detail is demanded to clarify the required value ranges or reserved sizes
for the attributes to store. In the following enumeration existing data formats are listed.

� Crystallographic databases store x-ray crystal structure data. Examples are
Protein Data Bank PDB and Cambridge Structural Database.

� NMR spectra databases correlate chemical structure with NMR (Nuclear Mag-
netic Resonance) data. Often other characterization data such as infrared spec-
troscopy or mass spectrometry is also included.

� Reactions databases contain intermediates and temporarily created unstable
molecules in addition to the reactions participants in contrast to ordinary chemical
databases. This information allows us to make statements about the reaction
mechanisms.
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� Thermo physical databases contain all kinds of thermo physical information
such as equilibria, solubility, heats of vaporization or formation, viscosity or ther-
mal conductivity.

Intersections with the above mentioned topics can already be found in general computer
science and are reported as data mining and machine learning1.

Virtual libraries

In the Cheminformatics viewpoint libraries are libraries of chemical compounds and
classes of compounds respectively existing in reality. Virtual libraries, however, extend
such libraries by computationally generated compounds that are similar to already ob-
served ones with respect to particular properties. Chemical libraries are used to represent
and explore the chemical space as mentioned earlier.

One application concerning virtual libraries is the search for novel compounds with
desired properties. This intention is also called the design of new chemical compounds.
Known molecules with at least partly favored properties are considered as input for the
design of a new molecule combining their properties. The undeniable objective is of
course the enhancement of naturally existing compounds and their combination in order
to fulfill at least the same demands as met before with less (chemical) material though.

For the design of novel compounds the following is needed: information about existing
molecules retrieved from physical/chemical experiments, information about correlating
properties like conformation and active centers or spatial placement of atoms and the
molecules hydrophobicity and finally algorithms qualified to generate chemically rea-
sonable molecules. The second requirement, the property correlations, is in large part
handled by looking for statistical correlations between properties in databases of chem-
ical compounds. Identified correlations are then tested and confirmed statistically and
furthermore for instance by verifying predictions with experiments or simulations. The
third demand, the generation of novel compounds, these days is meet by several heuris-
tics and approximations to implement some kind of chemical in silico process of forming
molecules. These methods reach from artificial intelligence in form of Markov chains
applied to compounds training databases to derive new molecules to so called ab initio
procedures in which quantum mechanics manage such calculations without empirical
parameters.

Virtual libraries in Cheminformatics are not only used for designing novel molecules.
In some of the major applications virtual libraries act as sub unit within larger use cases.
Besides the search for chemical compounds with desired properties in these libraries also
the molecular docking (e.g. in protein-ligand interaction) is based on their information
and furthermore used to identify relationships between molecules computationally and
therefore possibly with high throughput. Another application of virtual libraries is given
in the form of virtual screening which is a technique comparable to molecule docking
but more specialized and therefore treated in more detail in the following section.

1Data mining is the extraction of patterns from data and machine learning derives algorithmic behav-
iors based on empirical data.
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Virtual screening

Where the previous sections described the libraries or data storage of chemical com-
pounds and their features in this section the actual methods for investigating those
libraries and their chemical space is outlined. Virtual screening is a computational tech-
nique used in drug discovery research[43]. In general virtual screening is used to identify
molecules likely to possess desired properties such as biological activity against a given
target molecule. In this context virtual screening is one main part in the drug discovery
process and has therefore become an integral part of it.

To find now molecules with desired properties or compare molecules with respect to
these properties respectively two main screening methods have been established: the
ligand-based and the structure-based screening.

Ligand-based
Ligand-based screening requires a set of structurally different ligand molecules binding
to one receptor. Based on the information about the ligands a model of the receptor
can then be built. Such models are called pharmacophore models derived from the term
pharmacophore introduced by Paul Ehrlich in 1909. A pharmacophore consists only of
the features and properties of a molecule that have a pharmaceutical effect. A candidate
ligand can then be compared to the pharmacophore model to determine its compatibil-
ity with the model and furthermore how likely it is to bind to the receptor. Besides
the pharmacophore model approach there is also a way to scan a database of molecules
against one active ligand by applying chemical similarity analysis methods.

Structure-based
Structure-based virtual screening utilizes molecular docking of candidate ligands into a
target molecule. Afterwards a scoring function is applied to estimate the likelihood that
the ligand will bind to the target.

ComplexTarget

Ligand

+

Figure 5: Target and ligand molecules forming a complex. The depicted molecular dock-
ing also considers the conformational changes of the involved molecules, also
known as induced fit.

The prerequisite for the operation of many virtual screening programs is the compu-
tation of pair-wise interactions between atoms. As the latter is of O(N2) computational
complexity where N is the number of atoms in the system the necessary computing in-
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frastructure varies depending on the method and the problem size. Ligand-based meth-
ods typically can be performed on single workstation CPUs even for large screenings. A
structure-based screening, however, requires a parallel computing infrastructure such as
a computer cluster running a batch queue processor to handle the work. Furthermore
also the processed libraries or compound databases need to support being queried by
the parallel cluster.

Protein-ligand docking

Protein-ligand docking is a molecular modeling technique with the goals: prediction if
a ligand binds to a protein receptor or enzyme, and if so what is the spatial orientation
of the components and the three-dimensional conformation of the resulting complex.
Furthermore the strength of the eventual binding, i.e. the binding affinity, should be
determined to allow the comparison of diverse ligand molecules. To summarize the single
central question is: How do two molecules interact?

Figure 6: Molecular docking in the
application of protein-
ligand interactions, ex-
emplified by a colored lig-
and molecule docking to
a grey surface model of a
receptor protein.

Knowing the appropriate answer (i.e. method) there are still enough problems to
handle:

� 3D Puzzle = Six degrees of freedom

� Flexible or rigid conformers

� Appropriate molecule representation

� Steric and electrostatic adjustment of conformations - Induced fit
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� Treatment of biomolecules in solvation

� Energetic examination = Physicochemical descriptors

� Search algorithms - Scoring methods

Listing some direct applications of the protein-ligand docking we understand why it is
worth to explore the molecular docking computationally:

� Function prediction of novel formed protein-ligand complexes

� Molecular physiological processes like signal transduction, gene expression, enzy-
matic reactions

� Drug discovery and design to create and test pharmaceutical compounds

� Virtual screening

Quantitative structure-activity relationship

Quantitative structure-activity relationship QSAR is the process or mapping by which
chemical structure is correlated with a well defined property such as the pharmacological,
chemical, biological or physical activity[44]. Especially in the fields of drug discovery and
general Cheminformatics the QSAR is frequently used to relate chemical structure to
observed properties. First achievements are assumed to date back over 150 years when
a correlation between the boiling temperature and the molecule size, or better molecule
weight, of alkanes was found.

A well defined property of course also needs measurable values that can be stored and
that can be furthermore compared to each other. As an example the biological activity
can be expressed quantitatively as in the concentration of a substance required to give a
certain biological response, i.e. visually measurable growth or similar outcome. If now
the variables being related to each other are expressed by numbers it is obvious to form
a mathematical relationship in terms of a mathematical expression. The most general
mathematical form of a QSAR would be

Activity A = f(physicochemical and/or structural properties)

and could be used to either calibrate and enhance established relationships or predict
responses of chemical structures that have not been present in the training data set used
for the mapping function.

The basic assumption of all chemically grounded hypotheses is that similar molecules
have similar activities. This principle is amongst others called structure-activity rela-
tionship SAR. This inherently leads to the nontrivial problem how to define either the
similarity of molecules or the difference or dissimilarity respectively between molecules.
The stiffness of the mentioned problem to a great part derives from the fact that there
are quite a few molecular properties or dimensions in a mathematical sense to observe a
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quantitative difference. Furthermore it remains still unclear which molecular properties
have an influence on which kind of activity, such as reactivity or solubility. Finally it
must be said that the above-mentioned assumption has proven not to hold under all
circumstances. The fact that not all similar molecules have similar activities is called
the SAR paradox.

In the following a few concrete applications of the QSAR approach are listed to show
its certain applicability:

� Prediction of boiling points of chemical compounds within a particular compound
family

� Interactions between structural domains of proteins besides the interactions of a
family of molecules with an enzyme or receptor binding site

� Chemical risk management using QSAR models

2.1.3. Representations

As soon as we think of chemical molecules, write them down on a paper or download
the three-dimensional atom coordinates of a molecule we inevitably deal with represen-
tations. They are depictions and images of what we cannot see in reality but what we
still work with. Currently dozens of different representations of chemical information
are available and even more could be listed if we consider all subsidiary developments.
Depending on the considered application and the use case the adequate form of repre-
sentation has to be chosen. For the right or at least appropriate choice the requirements
of the particular application must be taken into account. This means that the required
information is available in the representation and furthermore that the information com-
plies with the necessary detail.

For example, if we want to quickly depict the mechanism of a chemical reaction,
maybe on a sheet of paper, it is certainly sufficient to write down the structural for-
mula of the involved molecules instead of giving the coordinates and polarization of all
atoms. The other way around it is rather useless to provide a molecule in form of a
mere elemental formula if you want to calculate optimized geometries. Because of the
different intentions and applications in computational chemistry there are naturally var-
ious representations and formats. Which format should be used still depends on the
particular application and usage and therefore has to be chosen with respect to exactly
those points. Below we describe several representations and formats used for the various
Cheminformatics applications.

Chemical formula

The chemical formula or molecular formula such as H2SO4 for sulfuric acid is probably
the easiest way of expressing information about the atoms of a single molecule of a
chemical compound. The chemical formula identifies each individual element by its
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chemical symbol and furthermore indicates the stoichiometric occurrence of elements
in one single molecule of a chemical compound using a subscript number following the
particular chemical symbol. Chemical formulae were introduced in the 19th century by
the well known chemist Berzelius and are still used in chemical equations to describe
chemical reactions.

Nevertheless the chemical formula only gives the atomic stoichiometry of a chemical
compound. No further information about the connectivity among the atoms or even
the spatial positioning within the molecule can be read from it. For instance both
chemical formulae CH4 respectively H4C stand for the molecule methane irrespective of
its molecular geometry and conformation. To avoid this lack of information sometimes
another representation has to be used such as the structural formula illustrating the
connectivity among the atoms and giving an idea of the molecular geometry of the
compound.

Structural formula

The structural formula of a chemical compound is a graphical representation of the
molecular structure and therefore shows the arrangement of the atoms and the connec-
tivity among them. The connectivity is shown either explicitly or implicitly via chemical
bonds.

S

3C

CH3

CH3

O

O N

N

N

N

H HO O

O

OH

Figure 7: Examples of structural formulae showing caffeine on the left and sulfuric acid
on the right.

In contrast to chemical names or chemical formulae structural formulae provide a
representation of the molecular structure. The obvious advantage arises when chemists
describe chemical reactions or processes because the structural formulae allow us to
visualize molecular mechanisms and changes that occur during a reaction as depicted
in figure 8. In order to provide a representation that covers the required information to
uniquely describe molecules and outline reaction mechanisms such as changing electronic
bonds and atom movements, the following demands need to be met. Molecules have to
be labeled explicitly except for organic molecules where the mainly used atoms carbon
and hydrogen do not need to be labeled as their position is defined by the molecular
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context. Valence electrons and bonds connecting the atoms also need to be labeled only
if it is unambiguous to leave the bond label. If a bond is present it also shows the bond
type, i.e. single, double or triple bond.

O

lCl
3

CH
2

Cl
2

R
R

R’
R’

O

A

Figure 8: The Nazarov Cyclization depicted using structural formulae. The Nazarov
Cyclization allows the synthesis of cyclopentenones from divinyl ketones. The
reaction is catalyzed by strong Lewis acids.

Analog to the different isomeric forms of many chemical compounds there also exist
many different developments of structural representations of molecules. In the following
some molecule structure representations are listed and exemplified in figure 9:

� Fischer projection
This representation is a projection of a three-dimensional organic molecule onto
two dimensions.

� Haworth projection
The Haworth projection is a common way of representing the cyclic structure
of monosaccharides. The projection shows a simple three-dimensional perspective
and indicates atomic bonds being closer to or farther from the observer by different
line thickness.

� Skeletal formula
Skeletal formulae are the standard notation for more complex organic molecules
because they are quick and easy to draw. The reason for this is that on the one
hand carbon atoms are only represented by vertices (corners) and line endings
and not written explicitly and on the other hand hydrogen atoms are only marked
explicitly when bound to elements other than carbon.
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Figure 9: Examples of three popular projections. The left figure shows the Fischer pro-
jections of a D-glucose. The center figure shows the Haworth projection of beta
D-glucose whereas also a sense of perspective is given by varying the binding
line weight to outline the visual depth of the molecule. In the right figure the
skeletal formula of 2-Methyl-1,3-butadienol is shown.

Molecule graph & Connection table

In Cheminformatics a molecular graph or chemical graph is a representation of the
structural formula of a molecule in terms of graph theory, as mentioned in chapter 2.3. A
molecular graph is an undirected labeled graph whose vertices correspond to the atoms
of the chemical compound and whose edges stand for the chemical bonds connecting
particular atoms. The vertex labels typically show the chemical elements symbol and
the edges are labeled with the type of bonds. One possibility to store such a graph
computationally is a connection table that map the information about adjacent vertices
and by what edges they are connected onto a two-dimensional table with N columns
and rows respectively, whereas N is the number of atoms in the considered molecule. A
cell with table coordinates C and R indicates the connectivity of the atoms defined by
column C and in row R. The meaning of a certain cell value varies between different
formats. Nevertheless all sorts of connection tables mentioned here are redundant in
the sense that the matrix they represent can be mirrored on the diagonal. For instance
the following connection table formats based on the graph representation have been
established, exemplified using figure 10:

67

N

O 1

2

3

4

5

Figure 10: A numbered molecule structure used to
explain the different formats of connection
tables and matrices.
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� Adjacency matrix

In the adjacency matrix the cell val-
ues can only be 0 or 1 indicating
whether two atoms (vertices) are
connected by a bond (edge) or not.

1 2 3 4 5 6 7
1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 0 1 0 1 0 0 1
4 0 0 1 0 1 0 0
5 0 0 0 1 0 1 0
6 0 0 0 0 1 0 0
7 0 0 1 0 0 0 0

� Connection matrix

The connection matrix is set up
similarly to the adjacency matrix
with one crucial difference. The cell
values do also indicate the particu-
lar chemical bond type and there-
fore go from 0 to 3, where 0 still
means that the considered atoms
are not connected at all.

1 2 3 4 5 6 7
1 0 2 0 0 0 0 0
2 2 0 1 0 0 0 0
3 0 1 0 1 0 0 1
4 0 0 1 0 2 0 0
5 0 0 0 2 0 1 0
6 0 0 0 0 1 0 0
7 0 0 1 0 0 0 0

� Distance matrix

The cell values of the distance ma-
trix may show two characteristics.
The value is either the geomet-
ric distance of the two particu-
lar atoms in the spatially spread
molecule or the topological dis-
tance (figure on the right), for ex-
ample the number of bonds (edges)
forming the shortest path between
each two atoms.

1 2 3 4 5 6 7
1 0 1 2 3 4 5 3
2 1 0 1 2 3 4 2
3 2 1 0 1 2 3 1
4 3 2 1 0 1 2 2
5 4 3 2 1 0 1 3
6 5 4 3 2 1 0 4
7 3 2 1 2 3 4 0

Taking a look at the outlined table representations it can easily be recognized that all of
them are redundant. The same informational content can be achieved when leaving one
half of a particular matrix as it is mirrored on the main diagonal. More storage space
can be saved if only cell values unequal to zero are stored. Especially the adjacency
matrix and the connection matrix are rather sparse due to zero values.

Applications of the mentioned graph representation are first of all the calculation
of topological indices or connectivity indices, like the Wiener Index, as part of graph
isomorphism and of course the graph grammar approach applied to chemical reactions
that our main application is based on. Other applications such as the computational
storage of chemical data have been mentioned earlier in this thesis.
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SMILES

SMILES is the abbreviation for simplified molecular input line entry specification and is
a specification for unambiguously describing the structure of chemical molecules using
short ASCII strings. It is therefore a linear notation for molecule structures. In history a
substantial amount of effort has been spent on designing textual descriptions of molecular
structures and graphs which could be used for computer aided storage, query and analysis
[39]. Other textual description forms are known as Wiswesser Line Notation WLN and
SYBYL Line Notation SLN. Nevertheless SMILES is still widely-used among chemical
and biochemical applications, databases and research.

The specification SMILES was originally developed by David Weininger [36] in the
late 1980s. Weininger later on founded the company Daylight Chemical Information
Systems Inc. which since than advances the further development and extension of
the SMILES [38]. Since the term SMILES denotes the mentioned specification for a
molecular representation a specific instance should strictly be called SMILES string to
avoid misunderstandings. The grammar for SMILES strings defines the representation
of atoms, bonds, branches, aromaticity and even specialties like stereochemistry and
isotopes.

H N

NH O

O

O

F

1

1 2

2
3

3

N

Figure 11: A visualized SMILES string generation. Given a molecule at first the cycles
are broken (yellow bonds) and a main backbone (typically the longest path)
is selected. Then the branches and broken cycles are written in parentheses
according to their appearance on the backbone. The resulting SMILES string
is: N1CCN(CC1)C(C(F)=C2)=CC(=C2C3=O)NC=C3C(=O)O

Atoms are represented by their chemical element symbol from the periodic table and
have to be written in square brackets: [Fe], [Au]. The brackets can be omitted for the
most common elements in organic components such as B, C, N, O, P, S, F, Cl, Br and I.
Omitted brackets also imply that the proper number of implicit hydrogen atoms should
be assumed by the particular unit interpreting the certain SMILES string. Eventual
electrical charges of atoms are coded within the brackets by a + or = sign after the
element symbol followed by the number of charges if greater than one: [Ti+4], [OH-].
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Bonds are coded by the characters =, = and # according to the bond types single,
double or triple bond. Again the most common bond type, the single bond, can be
omitted. In such a case the non-existing bond between two sequenced atoms in the
SMILES string is assumed to be single. Because of this circumstance butane simply
can be written as SMILES string CCCC. Special ring closure labels are used to indi-
cate connectivity between non-adjacent atoms in the SMILES string. The rings are
numbered consecutively beginning with one, which for cyclohexane results in the string
C1CCCCC1.

1

1

Figure 12: Example for ring closure labels, showing cyclohexane C1CCCCC1.

Since a SMILES string is defined to be a sequence of adjacent atoms, branches in
a molecule structure have to be distinguished. Therefore branches are written with
parentheses and may even occur hierarchically in the string, which means that branches
can also start within another branch: CCC(=O)O. In computer science one would define
this by the occurrence of at least two opening parentheses following in a sequence with
possible atoms in between but without a closing parenthesis between them.

O

Figure 13: A branching example in cyclobutanone, specified by the SMILES string
C1(=O)CCC1.

Aromatic atoms, which can be C, O, S and N, are outlined with their lower case
c, o, s and n. Bonds between aromatic atoms are by default aromatic but can be
specified explicitly using the ”:” symbol as a forth bond type. As a result pyridine can
be represented by the SMILES string n1ccccc1.

The ability of SMILES strings to represent not only the two-dimensional structure of
a chemical compound but also certain information about its stereochemical properties,
is very useful for applications and users working with them. The configuration around
double bonds is declared using the symbols / and \. A trans-difluoroethene, in which the
fluorine atoms F are on opposite sides of the double bond, is written as F/C=C/F. The
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1

1

N

Figure 14: An aromatic example showing pyridine, specified by the SMILES string
n1ccccc1.

cis-difluoroethene is therefore written as F/C=C\ F, depicting a symmetry of slash and
backslash on behalf of the vertical axis of the double bond. To distinguish enantiomers
of a molecule the view onto its chiral center must be specified. This configuration
at tetrahedral carbon is specified by @ or @@, standing for the counter-clockwise or
clockwise appearance of the substituents in the SMILES sequence.

H

H

F

F H H

FF

Figure 15: Structure of trans- and cis-difluoroethene, specified by the SMILES strings
F/C=C/F (trans) and F/C=C\ F (cis).

Isotopes are simply defined by their integer isotopic mass preceding the atomic sym-
bol. Thus butane with one carbon-14 atom is written as CC[14C]C.

In graph-based nomenclature the computational procedure for deriving a SMILES string
can be defined as follows: A SMILES string is obtained by printing the symbol nodes
(atoms) encountered in a depth-first tree traversal of the chemical graph. The molec-
ular graph is optionally trimmed to remove hydrogen atoms and cycles are broken as
mentioned above to turn the graph into a spanning, cycle-free tree. At the positions
where cycles have been broken enumerated numeric labels are included to indicate the
connectivity of the particular nodes. Parentheses are used to represent branching points
on the tree and a branching-depth respectively.

Now that we know how to extract a SMILES notation from a chemical compound we
might recognize that there is more than one way to build a correct SMILES string for
one single molecule. For this reason it is of high importance for databases and many
other applications to work with and provide unique SMILES strings that are always
the same string for the chemically equal compound. Such SMILES strings are called
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canonical. All of the following SMILES strings are valid for describing cyclobutanone
(figure 13), the last one being the canonical:

C1(=O)CCC1

C1C(=O)CC1

C1CC(=O)C1

C1CCC1=O

O=C1CCC1

In August 2006 the International Union of Pure and Applied Chemistry IUPAC intro-
duced the International Chemical Identifier InChI as standard for molecular formula
representation. Although SMILES is considered of being only slightly more readable for
humans than the InChI, it has actually a wide base of software applications and support
in Cheminformatics.

Besides the linear representation of molecule structures the SMILES framework also
provides a convenient query-specification language (SMARTS) and representations for
chemical reactions (SMIRKS) [38]. Both the SMILES arbitrary target specification
SMARTS and the SMIRKS are extensions of the SMILES and therefore share a common
string grammar with certain extensions. SMARTS basically allows one to query sub-
structures in SMILES strings and therefore defines patterns to match target SMILES
string. The extensions of SMARTS compared to SMILES contain wild card symbols
and logical operations like AND and OR. For instance the SMARTS pattern [O,S]CCC
matches a set of four atoms whereas an oxygen or a sulphur is bonded to three carbons.

3

4 4

N N

O

+

−

* *

O

O

O

1 1
2 2

3

Figure 16: The chemical reaction nitro group conversion written as SMIRKS string show-
ing wild cards and the atom mapping.

SMIRKS, however, is a combination of SMILES and SMARTS used to depict chem-
ical reactions in terms of graph transformation. A SMIRKS reaction string specifies
the involved reactants, products and optionally the agents in the format of ”reac-
tants>agents>products”. Molecule SMILES strings within these three groups are con-
catenated via a dot ”.” and the groups are separated using the > symbol. Furthermore
an atom mapping can be coded using the SMIRKS outlining corresponding atoms on
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the reactants side and on the products side of the reaction. The atom map is written as
integer values within the atom label delimited by a colon. The SMIRKS string for the
reaction in figure 16 is: [*:1][N:2](=[O:3])=[O:4]>>[*:1][N+:2](=[O:3])[O-:4].

Networks

In the previous sections various representations of chemical compounds and molecules
in their single occurrence have been discussed. Now we are devoted to the depiction of
a certain amount of molecules relating to each other, i.e. networks in terms of graph
theory. A network can be defined as a directed graph with weighted edges, whereas
these properties might differ between the various applications. The theory behind the
special application of graphs in terms of networks is called network theory and apparently
part of graph theory. In Cheminformatics and Bioinformatics networks are used when
representing all kind of reaction networks. A reaction network outlines the relationships
between the single contained molecules and therefore also allows inferring interactions
among them. Analog to the necessity of representing chemical compounds, networks
also have to be represented if we want to store data and information about them or
process them computationally.

V
1

V
5

V
3

V
4

V
6

V
2

V
7

E
2

E
3

E
1

E
4

E
9

E
7

E
6

E
8

E
5

Figure 17: A reaction network only consisting of vertices V (grey circles) meaning
molecules and directed edges E representing the reactions among the chemical
compounds. Such a network is called substrate graph.

As the graph theoretical part in this thesis follows in section 2.3 we will confine our-
selves to descriptive visualizations of the possible and useful network representations in
this working field. In figure 17 we outline the probably most natural depiction one might
think of. It consists of the key elements of a chemical reaction, the involved molecules
(vertices V1 to V7) and a direction pointing from the reactants to the products (edges
E1 to E9). On the other hand this representation has obviously a pitfall that we will
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describe in the following. If more than one reaction leads to the same molecule species
there are multiple equal reaction-edges pointing to this particular molecule species. The
problem now appears if we want to get back the information about what reactions lead
to our regarded compound and further what reactants belong to those reactions. It
arises that the imaginative conversion or projection to the depicted substrate graph is
not bijective and information definitely gets lost. In the next representation a second
vertex type is utilized to stand for the intrinsic reaction. Molecule vertices hereby can
only be related using a reaction node. The directed edges are needed on the one hand
to group reactants of a reaction and point to the particular reaction node, and on the
other hand to point from the reaction node to all products.
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Figure 18: Reaction network with vertices V (grey circles) meaning molecules, directed
edges E and separate reaction vertices (green rectangles) R1 to R4 marking
reactions among chemical compounds.

The advantage of this treatment is that all information about the chemical reactions
remains in the network and is therefore not lost. Nevertheless, there remains the dis-
advantage that the actual chemical reaction now requires not only the edges but also
another vertex type. If we were to find a satisfying representation that not only covers
all needed information but is also somewhat close to reality, we could call this minor
drawback unesthetic.

Still there is another possibility to even get rid of the extra vertex type for reactions.
The talk is of hypergraphs. A hypergraph is a generalization of a graph with only one
crucial difference [6, 42]. An edge no longer has exactly two incident vertices but indeed
connects potentially many vertices. A hyperedge1 can therefore be thought of as a set
of incident vertices and is mathematically a subset of the whole network. Moreover a
hyperedge may also be imagined as an edge in a higher dimensional space in which more

1An edge in a hypergraph is adequately called hyperedge.
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than two areas border on a single (hyper)edge. This single difference between a graph
and a hypergraph in fact implies a lot of conclusions we cannot even touch on.
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Figure 19: Reaction network represented as a directed hypergraph on the left. The
vertices V (grey circles) are related to each other according to the chemical
reactions R1 to R4 using hyperedges E1 to E4 (black lines). A hyperedge
starts at each vertex describing a reactant (broad end) and ends in each of
the vertices standing for product molecules (thin end). The right side shows
the set-theoretical hypergraph.

Undeniably we finally described the ultimate representation for chemical reaction net-
works in which a network of seven molecule species and four reactions is depicted as a
corresponding directed hypergraph of seven vertices and four hyperedges. Unfortunately
not only the imagination of a hypergraph is of high complexity. The theoretical descrip-
tions and furthermore the graph theoretical operations on a hypergraph, such as the
graph rewriting, are of even higher complexity compared to an ”ordinary” graph. As a
consequence in computer science, especially in Cheminformatics and Bioinformatics the
hypergraph is rarely used and still lacks a widespread applicability.

2.2. Chemical Reaction Network Theory

We studied the Chemical Reaction Network Theory CRNT mostly guided by the work
of Gunawardena [12]. Models of chemical reaction networks or intra-cellular biological
systems are in general based on systems of nonlinear ordinary differential equations
(ODEs). Because of the complexity of these ODEs mathematical theorems would be
appreciated that are able to describe fixed points1 or other hints for the solutions of
the ODEs. The CRNT, however, supplies a context for which relevant mathematical

1Fixed points are points x of a function f(x) where f(x) = x
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results for this problem have been established. More exactly it contains several theorems
about systems of nonlinear ODEs which describe the behavior of reactor basins used in
chemical engineering.

The Chemical Reaction Network Theory has been developed over the last 30 years. It
bases on the work of Horn and Jackson [31] and was subsequently extended by Martin
Feinberg and his students [32]. The theory introduces new concepts, as the deficiency
of a reaction network1, and even though it is still unclear to what extent it is applicable
to biological problems and viewpoints there can already be made interesting associa-
tions between both fields. The conclusions of the CRNT sometimes hold irrespective of
parameter values in the system which might for instance be associated with biological
robustness2.

The key insight of the CRNT is that the ostensible nonlinearity of the ODEs arising
from mass-action kinetics accommodates considerable linearity. This results from the
immanent network of chemical reactions which in fact define a directed graph upon
the contained molecule species. In addition this intrinsic structure limits the possible
nonlinearity and furthermore strengthens why the results of the CRNT are possible.
Thus, to explain the main results we utilize an example reaction network taken from
Feinberg’s work [33]:

A1 + A2 ⇀↽ A3 → A4 + A5 ⇀↽ A6

2A1 → A2 + A7
(1)

←
⇀↽

A8

In the CRNT the following properties of a reaction network are of interest and essen-
tially for deriving and expressing further thoughts and explanations:

� The complexes of a network are the sets of molecule species before and after a
particular reaction arrow. Therefore the set of complexes for network (1) is

{A1 + A2, A3, A4 + A5, A6, 2A1, A2 + A7, A8}

and the number n of complexes is 7 respectively. Complexes can also be written
as so called complex vectors. A complex vector is of length N , where N is the
number of species in the network, and represents the stoichiometric coefficients
for the molecule species of the associated complex. The species number N being
8 and associating vector indices 0 to 7 to species A1 to A8 we can for instance
write complex A4 + A5 as vector [0, 0, 0, 1, 1, 0, 0, 0] and complex 2A1 as vector
[2, 0, 0, 0, 0, 0, 0, 0] respectively.

1The deficiency of a reaction network is the dimension of a particular vector space and can be calculated
after determining the network variables number of complexes, number of linkage classes and its rank.
Terminology and mathematical details can be found in reference [33].

2Robustness by means of a ubiquitous and fundamental feature of complex evolvable systems. It
facilitates evolvability and vice versa robust traits are often selected by evolution.
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� The reaction vectors of a network are defined analog to the complex vectors above
and therefore represent the stoichiometric changes induced by the reactions. A
reaction vector is obtained by subtracting the reactant side from the product side,
in terms of the particular complex vectors. Thus, for reaction 2A1 → A2 + A7

the reaction vector is the subtraction of complex vector A2 + A7 minus complex
vector 2A1. This produces the final reaction vector [−2, 1, 0, 0, 0, 0, 1, 0], which also
means that within this reaction two molecules of species A1 are destroyed and one
molecule of the species A2 and A7 is created in each case.

� The rank of a reaction network is defined as the number of elements in the largest
linearly independent set of reaction vectors. Whether a set of such vectors is
linearly dependent or independent can be distinguished when going a path along
all reaction in the particular set. If we cannot make any cycles or take a path on
which reactions might collide with other reaction, in the sense of annihilating each
others stoichiometric change, the set is called linearly independent. Otherwise it
is linearly dependent. More mathematically the rank of a reaction network can be
defined as the rank of a matrix consisting of all single reaction vectors, whereas
the matrix has to be reduced to echelon form before determining the rank. For
our example network (1) the rank is 5, as the largest set of linearly independent
reaction vectors is the following:

{A1 + A2 → A3, A3 → A4 + A5, A4 + A5 → A6, 2A1 → A2 + A7, A8 → 2A1}
The matrix derived from reaction network (1) is given as follows:

R =




−1 −1 1 0 0 0 0 0
1 1 −1 0 0 0 0 0
0 0 −1 1 1 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 −1 −1 1 0 0
0 0 0 1 1 −1 0 0

−2 1 0 0 0 0 1 0
0 −1 0 0 0 0 −1 1
0 1 0 0 0 0 1 −1
2 0 0 0 0 0 0 −1




After reducing the matrix to row echelon form, for instance via Gaussian elimina-
tion, the number of non-empty rows is the rank of the matrix, which is 5 in our
example.

� The linkage classes of a reaction network are sets of complexes that show linkage
among each other only within one set but not to any complex of another set.
Linkage classes can also be understood as the partitions in a k-partite reaction
network graph. In reaction network (1) there are the following two linkage classes:

{A1 + A2, A3, A4 + A5, A6} and {2A1, A2 + A7, A8}.
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� The deficiency of a reaction network is now defined as a non-negative integer δ that
can be calculated when knowing the above mentioned properties of the particular
network. The deficiency δ is defined by the formula

δ = n− l − s

where n is the number of complexes in the network, l is the number of linkage
classes and s is the rank of the network. For our network (1) n = 7, l = 2 and
s = 5, which results in a deficiency δ = 7− 2− 5 = 0.

On the basis of the just defined properties of a chemical reaction network, especially
the deficiency and the rank, the CRNT presents the deficiency zero theorem and the
deficiency one theorem among others. These two major theorems make statements about
the kinetics and the existence and properties of steady states of a reaction network in a
way that avoids complex and intricate calculations of differential equations.

2.3. Graph theory

Graph theory is simply the study of graphs [45]. As mentioned earlier in Cheminfor-
matics graphs are used in various applications and for diverse problems. The usage
ranges from representing single molecules to reaction networks of chemical compounds
and also more generally to the representation of any relations between compounds or
bigger complexes such as in gene maps or proteomics. Leonhard Euler’s work on the
Seven Bridges of Königsberg (1736) is regarded as first paper in graph theory. In order
to be able to appropriately describe usages and applications of graphs and furthermore
to utilize their inherent properties and possibilities, we start with the very basics of
graphs. Subsequently we go further to some mathematical problems, also occupying all
sorts of computer scientists, and finally to graph grammars and graph transformation.

2.3.1. Graphs

Graphs undeniably provide the most basic mathematical model for entities and relations
[7]. A graph G can be declared to consist of a set of vertices V and a set of edges E such
that every edge e ∈ E links two adjacent vertices (source, target) s, t ∈ V . Therefore
a graph is entirely written as G = (E, V ). Furthermore a graph shows some properties
that are described by depicting different types of graphs in the following list:

� Undirected graph

An undirected graph G = (V, E) is characterized by edges
E that do not show any orientation. Each edge is therefore
not an ordered pair of vertices in V but a set or multiset
of vertices. The edges are depicted by lines without any
arrows and outline the symmetric relations present in the
undirected graph. An example is shown in the right figure.
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� Directed graph

A directed graph or digraph is an ordered pair D = (V, A)
with a set of vertices V and a set of directed edges A, also
called arcs or arrows. Each arc represents an ordered pair
of vertices (s, t) ∈ V and therefore directs from s to t.
Furthermore a directed edge (t, s) leading from t to s is
called (s, t) inverted.
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� Mixed graph

A mixed graph is an ordered triple G = (V, E,A) and rep-
resents the combination of undirected and directed graphs.
Obviously both classes of edges are allowed in one graph
and therefore directed and undirected graphs are only spe-
cial cases of the mixed graph.
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� Weighted graph

In a weighted graph the edges are kind of labeled to assign
a weight to each edge. Those weights, typically numbers,
might describe various properties depending on the scope of
the particular application of the graphs. In Cheminformat-
ics the weight might denote the bond type in a molecular
graph, the spatial distances between the atoms in a molecule
or even the reaction rate in a chemical reaction network. In
our example the edge weight is furthermore stressed by ac-
cording line width.
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� Regular graph

In a regular graph every vertex has the same number of
neighbors, i.e. the same number of adjacent vertices. Thus,
every vertex has the same degree k and in this case the graph
is then called a k-regular graph or regular graph of degree k.
Our example is a 2-regular graph as each vertex has degree
two.
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� Complete graph

A graph is said to be complete if each pair of vertices is
connected by an edge. As this means every vertex has the
same degree, it follows that a complete graph is also regular
with the degree n−1 where n is the number of vertices. The
described completeness is also called maximum connectivity.
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� Bipartite graph

A bipartite graph is the special case of a k-partite graph for
k = 2, whereas a k-partite graph can be divided into k dis-
joint sets of vertices such that no edge in the graph connects
vertices contained in the same subset. This means edges may
only connect vertices of disjoint sets. If this requirement is
fulfilled the graph is divided into k partitions. The example
figure on the right shows a bipartite graph where the parti-
tions are formed by red and blue colored vertices. Consider
that there is only connectivity among the partitions but not
within one.
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Having depicted some properties of graphs we now know the different viewpoints a graph
can be specified and examined. In the following section we dedicate ourselves to some
famous problems and implications regarding graphs and operations on them.

2.3.2. Famous problems

As a consequence of the wide range of applications of graphs and their variety with re-
spect to the observable properties, there have been defined and proposed many problems
of either theoretical kind or nonetheless practical kind. In this chapter we describe the
most important graph theoretical problems regarding our overall application.

Route problems

Route problems are among the oldest applications in graph theory. As mentioned earlier
the well-known mathematician Leonhard Euler laid the foundations of graph theory and
anticipated the idea of topology with his work on the Seven Bridges of Königsberg. In
Euler’s time there were seven bridges over the river Pregel in Königsberg and the par-
ticular question was to find a way through the city that would completely cross every
bridge exactly once. Euler utilized graph theoretical considerations to prove that it was
actually not possible to find such a path [47]. However, Euler did not only falsify this
special problem mainly concerning tourists of the Russian city Königsberg. Euler indeed
deduced general statements about finding such so called Eulerian paths by reducing the
city Königsberg and its bridges to an abstract graph of vertices (land masses) and edges
(bridges) connecting them. He then showed, that the existence of such a path depends
on the degrees of the vertices and in the special case of Königsberg the four vertices con-
nected by seven edges lead to an impossibility of finding an Eulerian path. Nowadays
finding Eulerian paths is mainly used in Bioinformatics when a complete DNA sequence
is to be reconstructed from the assembly of its single fragments = the biochemical output
of most DNA sequencing techniques.

Another route problem was introduced by William Rowan Hamilton. Hamilton in-
vented the Icosian game in which a Hamiltonian cycle or path has to be found in the
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edge graph of a dodecahedron1, which is more or less its two-dimensional projection. In
contrast to the Eulerian path, which is defined to visit all edges of a graph, the Hamilto-
nian path visits every vertex exactly once [48]. Additionally an edge may not be visited
more than once, but may of course be missing at all in the path. Figure 21 shows a
Hamiltonian cycle which is nothing more than a Hamiltonian path requiring the start
vertex and the end vertex to be adjacent. A graph is called Hamiltonian if it contains a
Hamiltonian cycle. Determining whether Hamiltonian paths or cycles exist in a graph
is the Hamiltonian path problem which was proven to be NP-complete2.

Figure 21: Hamiltonian cycle in the edge graph of a dodecahedron. The dodecahedron
is Hamiltonian like all Platonic solids.

Our next graph theoretical problem is called Shortest path problem and already im-
plies what it is about. The talk is of finding the shortest path between two vertices in a
weighted graph, whereas each path is rated with the sum of all involved edges or better
their weight. Regardless of all known generalizations we describe only the single-pair
shortest path problem in which only one path between two particular vertices is ques-
tioned. Applications of handling and solving this problem show the immense importance
of theoretical work in the working field of graph theory and are therefore listed below:

� Routing services between physical locations (Navigation systems).

� Deriving phylogenetic trees from DNA sequences or fragments by assessing the
genetic distances among them.

� Robotic systems optimizing sequences of operations.

� Routing algorithms for generating electronic printed circuit boards (placement of
components and circuit paths).

1A dodecahedron is a polyhedron with twelve flat faces. A regular dodecahedron is a Platonic solid
and is composed of twelve regular pentagonal faces.

2Complexity class NP-complete means, that solutions to a problem can be verified quickly (in poly-
nomial time), but there is still no efficient way of computing a solution of a particular problem.
Therefore approximation algorithms and heuristics are used.
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Related to the shortest path problem and even more interesting for transport companies
and also tourists is the famous Traveling salesman problem TSP [49]. Obviously this
problem comes from the practical considerations one has to make when planning a route
under certain circumstances. In the present form this circumstances define the cities
one has to visit and the aim is to minimize the total way for the trip. As the main
applications for the mentioned problem are still found in the transport and delivery field
an additional requirement is that the traveler returns back home again. More general
and abstract we might again switch to the world of graphs and declare the problem as
follows: Given a weighted graph G = (V, E) and a set of selected vertices that need to
be visited, the shortest cycle p = (Vp, Ep) containing all of those vertices is demanded,
whereas the cost-function f(p) for comparing the cyclic paths is defined as the sum of
the weights of the n participating edges e ∈ Ep, i.e.

f(p) =
∑

n

weight(e)

Already the first mathematicians studying the problem in the 1930s observed the
important differences to the shortest path problem. Following always the shortest path
between two successive vertices equals the nearest neighbor heuristic which was shown
to be non-optimal. Cases in which it is better (entirely shorter) to first travel to a more
distant target but reach the following target in a shorter way then from a point that was
nearer in the first step can easily be constructed and are exemplified in the following
figure:
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Figure 22: Example of a weighted undirected graph depicting the Traveling salesman
problem for visiting all nine vertices V1 to V9 in the shortest path through the
edges without using an edge more than once. In contrast to the path length
of 57 units found by the nearest neighbor heuristic, the optimal, because
shortest, path for a traveling salesman would be only 51 units.
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As the TSP has been shown to be NP-hard the direct calculation of an exact solution
is only feasible and practicable for small problems such as in figure 22 above. The reason
for it is that an exact solution for the general problem can only be found by a brute
force search incorporating all possible permutations, which implies a factorial runtime
complexityO(n!). Although nowadays there exist faster algorithms it is still not practical
for larger problems like the ones emerging in industry, which is why heuristics have been
developed. Besides iterative improvements and randomized improvements like Monte
Carlo type algorithms or Markov chain algorithms, for special cases heuristics could be
optimized to find exact solutions.

Subgraphs

A subgraph H of a graph G consists of a subset of the vertices of G and furthermore
of a subset of the edges of G. The relation between a graph G and a subgraph H may
also be summarized by saying: Graph G contains another graph H. Other subgraph
definitions reflect different assertions about the relation between G and H. A spanning
subgraph H, for instance, has the same vertex set as its supergraph G. A subgraph
H is furthermore called induced, if it contains all edges from G that connect the same
vertices of H in G. The subgraph H is then said to be induced by its vertex set V (H).
Otherwise G can be declared to be H-free, as H is no induced subgraph of G.

The really stiff problems now occur when trying to verify a graph-subgraph relation. It
is called the Subgraph Isomorphism Problem and already encapsulates the hardest parts:
finding a subgraph within another graph and doing so for any isomorphic subgraph as
input, which presumes determining whether two graphs are isomorphic. Therefore we
first describe the graph isomorphism.

In graph theory two graphs G and H are said to be isomorphic if they have the same
number of vertices which are furthermore connected in the same way [50]. In other
words there exists a bijective function that maps the vertex set V (G) of graph G to
the vertex set V (H) of graph H such that the adjacency information of V (G) is the
same as of V (H) and vice versa, i.e. the set of edges remains the same. We can then
write f : V (G) → V (H). Such graphs are called isomorphic and their relation can be
summarized by writing G ∼= H.

A 4B

CD

E F

21

36

5

Graph G Graph H

Figure 23: Isomorphic graphs G and H with
a bijective function mapping ver-
tex set V (G) = [A, B, C, D, E, F]
to V (H) = [1, 2, 3, 4, 5, 6].

For the above outlined graphs the isomorphism can be easily verified. After trans-
forming the vertex set of one graph into the vertex set of the other graph the adjacency
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relations remain the same. Nevertheless the general task of determining graph isomor-
phisms is of high complexity and could still not be ranked satisfactorily according to
complexity classes. To build now bridges to Cheminformatics we want to mention the
related issues of isomorphic chemical graphs and canonization. The canonization, or at
least the initial idea of it, has been described earlier in this thesis in terms of canonical
SMILES strings. The incentive behind this approach is to assign one unique SMILES
string to all possible inputs for one particular molecule species. Ostensible applications
are database related storage of unique chemical compounds, which is also a reason for
the many different canonization algorithms having been developed so far. Analog to the
canonical SMILES, and as it is nothing else than the following, also the canonization of
a graph is aimed at providing unique graphs for all possible isomorphic graphs. Most
algorithms number the vertices in a defined way that results in the very same order for
all isomorphic graphs.

Isomorphism regarding chemical graphs is a special case in graph isomorphism. Be-
cause the vertex sets of two isomorphic chemical graphs contain the same vertex labels,
only their order might differ. Therefore the task of identifying isomorphic molecule
graphs can be imagined by comparing graphs with their for example rotated or mirrored
copy. As chemical graphs are typically edge-labeled and the edge-labels as part of the
adjacency relation need to be matched, the problem remains hard enough compared to
the general graph isomorphism.

N

OH

O

H

O

H
OH

N

Figure 24: Both molecules are isomorphic and therefore show the same graph and the
same unique SMILES string CC1=C(C=O)CN(CO)C1.

The second part of the previously mentioned Subgraph isomorphism problem regards
the matching of subgraphs against possible supergraphs containing them. As described
earlier a subgraph quasi represents a subset (in terms of vertices and edges of course)
of another graph. Looking for a given subgraph H in another target graph G presumes
that every imaginable graph isomorphic to H is equally found, if H is a subgraph of
G. Applications of subgraph matching can be found in various working fields, ranging
from Cheminformatics, where similarities between chemical compounds are determined
by matching parts of their molecular graph against each other and chemical databases
are queried for substructures, and Bioinformatics, for the investigation of gene and pro-
tein interaction networks, to even modeling social networks mathematically. In addition
subgraph matching is certainly also the main step in graph rewriting, as the input graphs
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(the left hand side) first need to be matched with the rewrite rule before the transfor-
mation can actually be applied.

What is now the difficulty with subgraph isomorphism that we call it a problem? The re-
quirement of searching for one graph in another one is known for a few decades now and
nevertheless there has been established a substantial amount of work in this direction. In
1976 Ullmann [17] published his exact matching algorithm that bases on a backtracking
procedure with an effective look-ahead function to reduce the search space [16]. Due
to its generality and effectiveness the Ullmann algorithm can be applied to both graph
isomorphism and subgraph-graph matching. Although the algorithm is rather old and
there have been developed more specialized ones for large graphs [16] or reducing the
matching problem to the clique detection problem1, it is still one of the most commonly
used algorithms for exact graph matching. The following figure outlines the subgraph
matching procedure:
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Figure 25: Matching two subgraphs with SMILES strings C=O and CN(C)C in the
target molecule graph of caffeine. All matched subgraphs are colored red in
the supergraph.

One part of the matching algorithm is enumerating the vertices in both graphs in a
unique way, which is meant by isomorphism. The next is to effectively go through the
target graph and look for occurrences of the query subgraph. Due to parallel iterating
over both graphs and other improvements Ullmann’s algorithm was shown to scale with
polynomial time and memory requirement of O(N3) [17]. Another advantage of the
Ullmann algorithm is that its applicability is not limited to merely finding subgraphs
within other graphs. In his work Ullmann describes and derives mathematically that the
subgraph matching is a generalization of the graph isomorphism because it is contained
as a sub problem.

1A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset
are connected by an edge. The clique problem, however, is to find cliques of a given size in a graph.
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2.3.3. Graph transformation

On closer look graphs, regardless of the actual application, always represent a static
image of something, be it a molecule or a chemical reaction network. Even if we meant
something in motion, like the expanding behavior of a reaction network or a single chem-
ical reaction, a graph only depicts a snapshot of a possible time evolution. Thus graph
transformations, also graph rewriting, allow us to describe and model changes of graphs,
either concerning labeling or the adjacency information. As graph transformation is one
of the core concepts of our work we will start with some general basics and then proceed
with chemical graph transformation.

Common basics

Originally graph transformation has evolved from classical approaches to rewriting, like
Chomsky grammars and term rewriting, due to their shortcomings in expressiveness [7].
The first proposals in the direction of graph rewriting appeared in the late 1960s and
early 1970s and since then a broad theoretical basis has been developed knowing many
concepts and having found and solved many problems. The first basic concept is the
modeling of given scenarios by applying abstraction processes and further generalizations
as shown in figure 26.

Figure 26: The general concepts of graph transformation systems depicted on the exam-
ple of the famous game PacMan, viewed in terms of graphs. Graph rewrite
rules (collect, kill) are derived from known scenarios by ignoring uninforma-
tive context and considering nodes labeled with the concepts Ghost, PacMan
and Marble.

The above figure also outlines the basic idea of a type-instance relation. The concepts
or entities are listed on the bottom of the figure and represent the types of available
nodes or vertices in the graphs (scenarios). Every occurrence of these entities in the
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scenarios is of course an instance of one of the types. Considering this relation is crucial
for deriving rewrite rules from given scenarios as the context of a rule in fact represents
some kind of a type whereas its instances are the graphs and subgraphs the rule can be
applied to.

Coming back to the genuine core of the graph approach we now describe the specifi-
cation of graph transformations by means of rules. Graph rewriting is the technique of
rule-based creation of a new graph out of an original graph. Such graph rewrite rules
are formally written as p : L → R, which means: a rewrite rule p transforms a pattern
graph L into a replacement graph R. The pattern and replacement graphs are also
called left hand side or right hand side of the rewrite rule, according to their logical
position relative to the actual transformation operation, i.e. the arrow pointing from
left to right. Possible is also the interpretation of the left hand side L being the pre-
condition of the rule and the right hand side R describing the post-condition respectively
[7]. The constructive matter of a rewrite rule, however, is to generate transformations
by replacing occurrences of L in a given graph each by a copy of the right hand side R.
A graph transformation leading from a pre-state graph G to post-state H according to

a rewrite rule p is denoted by G
p(o)
=⇒ H. One complete graph transformation is therefore

performed in the following three steps:

� Find an occurrence oL of the left hand side L in the given graph G, i.e. our
previously described subgraph isomorphism problem.

� Delete all vertices and edges from G matched by L \R1.

� Paste to the result a copy of R \ L, resulting in the derived graph H.

The following figure illustrates the individual steps of a complete graph transformation:

Pattern L Replacement RContext

Find Delete Paste

1Symbol \ denotes the set-difference of L minus R, which results in all vertices and edges of L that
do not also exist in R.
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In general graph transformations problems may arise that nodes are removed but adja-
cent edges remain or even that all edges connecting a vertex are removed, leading to a
dangling node, i.e. a vertex without connection to the rest of the graph. As such behavior
may lead to surprising or even undesired effects in the application the following solution
is known in graph theory and summarized in [7]: Formulating application conditions
which exclude such situations as valid transformations and therefore avoid them in the
first place. This is achieved by the gluing conditions of the so called double-pushout
approach1 to graph transformation. For further applicability and generality many ad-
vanced concepts extending the basic approach have been developed and shall be listed
exemplarily:

� Constraints can be used to limit the number of connections of a vertex. More
complex constraints could even deal with the (non-)existence of certain patterns,
paths or cycles. With respect to our main focus on chemical graph transformation
this also allows us to avoid the removal or creation of atoms in a molecule.

� Application conditions are used to restrict connections in the vicinity of the rule’s
left hand side.

� Control conditions may be used to represent programmed graph transformations.
This means, for example, to insert conditions in the control flow of rewrite applica-
tions, i.e. change the order of rewrite rules to apply according to some condition.

After this introduction to the theory of graph transformation in the next section we
describe the more specific usage of graph rewriting in Cheminformatics.

Chemical graph transformation

We already stated earlier in this work that chemical molecules are usually represented as
chemical graphs in Cheminformatics. Considering the finding that graph transformations
allow us to outline and describe some transformation from one graph G to another
graph H, we might well think of chemical reactions as such graph rewriting. About
thirty years ago the first applications arose using graph rewriting to model chemical
reactions expressed by a graph grammar. After those so called graph L-systems [40]
several approaches were introduced with their application domain ranging from whole
organisms and tissues to organic molecules and even biomolecules like RNA. Reasons
for the success of graph grammars in the mentioned context might be the ability of
generalizations in the application on the one hand and certainly their intrinsic power of
handling patterns.

The main focus of this work lies on reaction networks of organic molecules and there-
fore chemical reactions involving the latter. Nevertheless any chemical reaction can
generally be represented as a sequence of applications of bond breaking and bond cre-
ation = atoms are generally conserved in chemical transformations [39]. Dedicated to

1The double-pushout is one of several algebraic approaches to graph rewriting in which the whole rule
application is divided into two separate (pushout) steps, connected via an interface or gluing graph.
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the approaches described in the previous section we will now illustrate examples of graph
rewrite rules that were derived from chemical reactions.
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Figure 28: The chemical reaction Aldol addition depicted as graph rewrite rule. The
first step of the whole reaction, the keto-enol isomerization, has been omitted such that
the first aldehyde is already an alcohol. Residues R1 and R2 are unspecific and do
therefore not occur in the rule. Residues R3 and R4 need to be restricted especially not
to be oxygen O.
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Figure 29: Rewrite rule of the Cannizzaro disproportionation. Basic environment
transforms two aldehydes into a carboxylic acid and an alcohol. Of high importance is
that the aldehydes may not posses an α-hydrogen on their residue R.

37



The two figures on the previous page delineated both, a combination reaction in terms
of the Aldol addition and the Cannizzaro disproportionation as some kind of a displace-
ment reaction. Also the two other main classes of chemical reactions (decomposition
reaction and exchange reaction [41]) can certainly be written as graph transformations.

Left hand side L Right hand side RRule context
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Figure 30: Rewrite rule of the famous Diels Alder reaction. Depicted is the intra-
molecular application of the reaction mechanism.

In contrast to ordinary (or better non-chemical) graph rewriting in Cheminformat-
ics much more emphasis is placed on constraints and restrictions and of course valid
rewrite rules to ensure the avoidance of dangling vertices or edges or even the creation
or deletion of atoms. The obvious reason is that every graph transformation taking chem-
ical compounds as input should return only valid and plausible chemical compounds in
any case. However, the possibility of constraining graph transformations is also a reason
why the graph grammar approach is so well suited for representing chemical reactions.
Indeed graph transformation systems and applications can support the operator to a
great extent in such a case by testing involved graphs and rewrite rules and verifying
them respectively1. Nevertheless everyone creating new rewrite rules should be aware of
the valuable responsibility.

2.4. Stochastic simulation

Simulation is a procedure to analyze systems that are too complex and stiff to describe
them as deterministic mathematical formula. The simulated model in general represents
some key characteristics of the considered system but does not cover all details, and is
therefore at best an approximation. Typically simulations are used to describe dynamical
system behavior as their mathematical formulation via ordinary differential equations
ODEs is only solvable exactly for very small problems. In the use case of describing
the dynamics of a possibly large chemical reaction network the calculation of an exact
solution is not practical.

1Invalid or implausible molecules for instance contain carbon atoms establishing more than the normal
four bonds to neighbor atoms.
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Therefore stochastic simulation algorithms and methods were developed to handle
and analyze those cases of chemical reaction networks. The first algorithm proposed in
1977 was Gillespie’s Stochastic Simulation Algorithm SSA [5], also known as Gillespie
Algorithm. The SSA bases on probability theory and is a variety of a dynamic Monte
Carlo algorithm. The algorithm takes account of the discreetness and stochasticity of the
simulated reaction network. For small particle numbers such as in cellular systems the
SSA is even better suited than deterministic solutions because the probabilistic behavior
of such systems is the core of the stochastic approach. It is furthermore an essentially
exact numerical simulation method for well-stirred systems, which was also deduced by
Gillespie. Due to this exactness the original SSA keeps track of every single reaction
event in the simulated system and is therefore rather slow and impractical for many
realistic problems [18]. Improvements have been achieved by reducing the number of
tracked reaction events per simulation time step. Gillespie therefore proposed the tau
leaping strategy in which Poisson random numbers are used to leap over many reaction
events if the changes in molecule particle numbers are small enough. With an adequate
selection strategy for the step size in the tau leaping simulation time can be reduced
significantly although the results are still comparable to the original SSA.

We will now briefly describe the theoretical foundations of stochastic chemical kinetics
and the SSA by summarizing [18].

We consider a system of N molecular species {S1, ..., SN} interacting through M chem-
ical reaction channels {R1, ..., RM}. The state of the system is described by the vector
X(t) ≡ (X1(t), ..., XN(t)), where Xi(t) is the number of particles of species Si in the
system at time t. We assume the system to be well stirred and in thermal (of course
not chemical) equilibrium. The dynamics of reaction channel Rj is characterized by a
propensity function aj and a state change vector νj ≡ (ν1j, ..., νNj), whereas aj(x)dt gives
the probability, given X(t) = x, that one reaction Rj will occur in the next infinitesimal
time interval [t, t + dt], and νij is the change in the molecular population of Si induced
by the particular reaction channel.

The dynamics of the system obeys the chemical master equation CME,

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)], (2)

where P (x, t|x0, t0) denotes the probability that X(t) will be x given that X(t0) = x0.
The CME is computationally intractable for all but the simplest models, so recourse is
taken to the logically equivalent SSA. It is based on the fact that, which

a0 ≡
M∑

j=1

aj(x), (3)

then given X(t) = x, the time τ to the next occurring reaction is the exponentially
distributed random variable with mean 1/a0(x), and the index j of that reaction is the
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integer random variable with point probability aj(x)/a0(x). To advance the system from
state x at time t, the SSA generates two random numbers r1and r2 uniformly in the unit
interval and then takes the time of the next reaction to be t + τ where

τ =
1

a0(x)
ln

(
1

r1

)
, (4)

and the index for the next reaction to be the smallest integer j satisfying

j∑

j′=1

aj′(x) > r2a0(x). (5)

The system state is then updated according to X(t + τ) = x + νj and this process gets
repeated until some final time or condition is reached. The SSA is exact in the sense
that the sample paths it generates are precisely distributed according to the solution of
the CME given in equation (2).

2.5. Chemical kinetics

Chemical kinetics or reaction kinetics is the study of rates of chemical processes or rather
reactions. Such a reaction rate of a particular reaction is intuitively defined as how fast
this reaction takes place, which can also be said to be the speed of a reaction. This speed
of a reaction, however, is the rate at which the concentrations of reactants (educts) and
products change. Consider a typical chemical reaction

aA + bB → pP + qQ

in which the capital letters A,B, P, Q represent educts and products and the lowercase
letters a, b, p, q stand for the stoichiometric coefficient of the certain molecule species.
The reaction rate v for this reaction occurring in a closed system under constant-volume
condition and incorporating full mass balance is then defined as

v = −1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

p

d[P ]

dt
=

1

q

d[Q]

dt
(6)

whereas [X] denotes the concentration of species X and the = sign is due to the de-
creasing concentrations of the educts A and B. Considering only species concentrations,
without the stoichiometric factor, the reaction rate r can also be written as the so called
rate equation

r = k(T )[A]m[B]n (7)

in which k(T ) is the reaction rate constant that depends on the temperature and expo-
nents m and n are called reaction orders and depend on the reaction mechanism.
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Chemical kinetics also includes investigating conditions and factors that influence the
reaction rate. Therefore we mention a few of those factors in the following list:

� Nature of the reactants: Depending on the bonding types of the involved molecules
(covalent, ionic) and other physical issues, like rearrangement of bonds, the speed
of reaction varies naturally.

� Concentration: As explained by collision theory the reaction rate increases with
higher species concentrations. The more particles are present in the same system
volume the more collisions among them occur.

� Temperature & Pressure: These physical properties tend to influence the rate of a
reaction as they deliver more or less energy into the system possibly causing more
or less collisions.

The next two sections are dedicated to the calculation of the reaction rate constant k
of a particular reaction as k is required to calculate the actual reaction rate which is
furthermore needed in our simulation of the network dynamics.

2.5.1. Arrhenius Equation

The Arrhenius equation is a formula for the temperature dependence of the rate constant
of a chemical reaction and was first proposed in 1884. The formula is written as

k = A · e− Ea
R·T (8)

where T is the absolute temperature in Kelvin, R is the gas constant, Ea is the acti-
vation energy and A is called the pre-exponential factor. The equation is seen as an
empirical relationship and also A and Ea have to be determined in macroscopic exper-
iments although the activation energy is often approximated by simply subtracting the
heats of energy of the products and the educts. As chemical reactions do not always
occur on macroscopic scale and the mere energy difference of product and educt side of
a reaction does not at all reflect the mechanism of a chemical reaction, the Arrhenius
equation does not provide consistent reaction rate constants when using computational
determined reactions.

2.5.2. Transition State Theory

The Transition State Theory TST is a theory of the rates of elementary reactions which
assumes a special type of equilibrium to exist between reactants and activated complexes
or transition state as depicted in the figure below. Although the TST has not been
successful in its original goal of calculating absolute reaction rate constants, it provides
a good description about how chemical reactions take place and therefore also provides
more accurate calculation results than the Arrhenius equation.
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Figure 31: A reaction coordinate diagram showing the Gibbs free energy for molecules
involved in a reaction. The transition state (or activated complex) lies at a
saddle point of the potential energy surface.

In the Transition State Theory the reaction rate constant k can therefore be expressed
by

k =
kBT

h
e−

∆G‡
R·T (9)

in which kB is the Boltzmann constant, h is the Planck constant, R is gas constant, T
is the absolute temperature and ∆G‡ is the Gibbs energy of activation describing the
energy difference between the transition state of a reaction and the ground state of the
educts [51].

Still the Transition State Theory has some limitations which are intended to be re-
solved by extensions to the theory. Improvements concern the traversal of the potential
energy surface not to lead to unexpected products, and the quantum mechanical exam-
ination of the atomic nuclei.
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3. Algorithm

3.1. Overall algorithm

For the overall algorithm we decided to implement the Concentration Sampling Network
Generator CSNG proposed by Faulon and Sault [4]. Faulon and Sault have been working
in petro chemistry for decades and therefore their studies are also settled there. Reaction
network generation has been used by applications in combustion and refining for a long
time up to now. However, formal techniques like our graph grammar based approach
limit their applicability to real reaction systems because of their computational scaling.
As a matter of fact it has been shown1 that the number of generated reactions and
intermediate molecule species generally scale exponentially with the number of reactants
atoms.
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Figure 32: Starting from an initial set of molecules (grey circles) and reactions (green
arrows) the reaction network is expanded. To avoid combinatorial explosion
of the network a filtering step follows every expansion step. The pruning
is performed based on reaction kinetics. Therefore first the reaction rate
constants (proportional to the arrow thickness) are calculated using quantum
mechanical models and secondly the dynamics of the reaction network is
simulated using a stochastic method in order to remove molecules with the
least concentration (proportional to circle radius) from the network.

To bypass the general limitation of exponential network growth several shrinking

1Details can be found in references 1=9 in [4].
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strategies have been introduced to stabilize the network or at least prevent it from
exploding by means of number of molecule species and reactions. According to Fren-
klach [13] there are five types of reduction strategies: 1) global reduction, 2) response
modeling, 3) chemical lumping, 4) statistical lumping and 5) detailed reduction. Global
modeling techniques are specific to a particular problem and therefore cannot be gen-
eralized as they transform a complete reaction scheme into a small number of global
reaction steps. Response modeling techniques represent a mapping of model responses
to model variables, whereas model responses are species concentrations and model vari-
ables are the initial environmental boundary conditions of the reacting system and pa-
rameters such as reaction rate coefficients. The solution method now returns model
responses by expressing them by algebraic functions in terms of model variables. These
algebraic functions (usually polynomials), however, are obtained by using experimental
data, which implies that response modeling techniques again are specific to a certain
problem. Chemical lumping and statistical lumping were developed for and are spe-
cific to polymerization-type reactions. The former is used to polymer growing reactions
assuming that reaction parameters like the rate coefficient or thermo chemical parame-
ters are more or less independent of polymer size. The latter model is used to describe
polymer-polymer interactions like silica powder growth and metal oxide growth. The
last reduction strategy is the detailed reduction. It comprises the identification and
removal of non contributing reactions in the network. An effective implementation is to
compare every reaction with a chosen reference reaction, for instance the rate limiting
step or the fastest reaction, by means of the reaction rate. This approach is a priori
applicable to any reaction system and therefore general enough to be picked up for a
general reaction network generator.

Following the ideas and concepts of Ugi et al. and Frenklach, Faulon and Sault in-
troduce a new method for reaction network generation in which the network generation
and reduction is performed simultaneously. In the cited reference they outline four algo-
rithms whereas the method performing the network reduction according to the species
concentration is the most suitable. This because contrary to former network generation
algorithms it was proven to scale in polynomial time (see equation (10)) and not in
exponential time.

Time-Complexity of the full algorithm, whereas MS is the maximum number of species
in the network and MC is the maximum number of network simulation steps:

M2
S · O(n6) + (MC + MS + 1) · O(n4) (10)

Looking at figure 32 we can easily extract the encapsulated parts of our reaction network
generator. In the following sections these parts are described in detail.

3.2. Reaction network generation

As mentioned in the general section above our algorithmic approach uses a formal tech-
nique to model its chemical universe or more concrete its reaction networks. The actual
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formalism is a graph-based artificial chemistry and the underlying mechanism is one of
the corner stones of our reaction network generator.

The talk is of graph transformations applied to chemistry. Through graph transfor-
mations we take a rather abstract look at a chemistry model. Molecular energies are
not taken into account and therefore this part of the overall algorithm can be seen as
mere graph grammar which is sufficiently for a computer scientific viewpoint.

A graph transformation per definition needs input or left-side graphs and graph rewrite
rules to generate output or right-side graphs. By applying all known rewrite rules of a
reaction network to all known molecule graphs contained in the reaction network the
latter is expanded incrementally.

As we have learned earlier a graph rewrite rule consists of three parts: the left graph,
the right graph, the context. Thus, in order to apply a graph rewrite rule within our
reaction network, molecule graphs that fit into the left hand side of the rule need to
be found. Therefore the subgraph isomorphism algorithms VF2 [16] and Ullmann [17]
are used to identify molecule graphs or parts of them1 respectively. Having identified
the left hand side of the rewrite rule it can then be applied and leads to the right hand
side molecule graphs by transforming vertices and edges in the defined way. These
transformations represent establishing or breaking bonds between atoms in the chemical
reality.

Iteration 1

Iteration 4

Iteration 2

Iteration 3

Figure 33: Combinatorial explosion of a Diels-Alder reaction network (4 iterations
counter-clockwise). The bottom right graph shows iteration four with al-
ready 451 reactions and 160 molecule species.

1This is of even higher importance when allowing graph rewrite rules to be applied to one single left
hand side graph which results in intramolecular reactions in a chemical sense.
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Since the described procedure always leads to at least as many molecules as there
were at the beginning and in the majority of all cases to much more molecules, this ap-
proach on its own obviously does not converge and therefore tends to cause combinatorial
explosion with respect to the reaction network size.

3.3. Reaction cycle analysis

Besides the main focus of our application on the reaction network generation and sim-
ulation of network dynamics we also wanted to analyze the reaction networks from a
different viewpoint than the pure chemical kinetics. Again a possibly evolutionary as-
pect in the reaction networks that we considered as use cases is crucial for the analyzed
properties. We are talking about reactions of molecule species in the network forming
cycles, because auto-catalytic or self-established cycles are supposed to play important
roles in the chemical and prebiotic evolution.

In order to analyze the reaction network for such cycles our bipartite reaction network
graph is transformed into a so called substrate graph. Whereas in the reaction network
graph whole sides of reactions, i.e. the particular group of educts or the particular group
of products, are connected to each other only via special reaction nodes , in the sub-
strate graph there are only single molecule species connected to each other according
to the reactions they are involved. This projection is called unidirectional or one-mode
projection as there is no unambiguous conversion back to the reaction network graph.

For the following chemical reactions with molecule species S1 to S6 we exemplify the
one-mode projection in the figure below.

S1 → S4

S2 + S3 → S5 + S6
(11)

S
1

S
2

S
3

S
4

S
5

S
6

S
1

S
2

S
3

S
4

S
5

S
6

Bipartite Graph Substrate Graph

Figure 34: One-mode projection from bipartite network graph to substrate graph

The bipartite network consists of vertices for molecule species (grey circles), vertices
for chemical reactions (green rectangles) and edges combining species to groups of educts
and products and relating them to each other by connections to reaction vertices. The
projection results in the substrate graph that only consists of species vertices and reaction
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edges whereas the edges here connect all educts and products respectively involved in
the particular reaction. Furthermore the substrate graph is undirected which is another
reason for the irreversible process of the projection.

In such a substrate graph we now look for cycles in the following way representing
some kind of a subgraph matching algorithm:

For each molecule species we start walking along all reactions developed by this species
and proceed in the same way at every succeeding species and we avoid going back the path
we came from. If we get back to the origin of our path we have finally found a cycle.

By counting the parts of our path, i.e. the vertices or molecule species occurring in
the path, we are able to consider lower and higher limits for cycles to look for. However,
one disadvantage of the former projection arises at this point. We lost the information
about what reaction connects two molecules since two species might easily appear to-
gether in more than one chemical reaction, but are only connected by one single edge in
the substrate graph. Nevertheless we can reduce this drawback by labeling the edges in
the substrate graph and coding all reactions projecting onto an edge into its label. By
post processing the outcome of this cycle analysis we can then reconstruct great parts
of the involved reactions of a found cycle as mentioned in the results (chapter 6).

3.4. Stochastic simulation

To avoid now the inevitable combinatorial explosion of mere iterative network expansion
a selection method has to be applied to the reaction network. Since we want to establish
a chemically consistent model of a given reaction network the selection approach should
preferably consider evolutionary aspects. With respect to the conceptual survival of the
fittest this supposes that more accumulated molecule species are fitter than less accu-
mulated ones. In mathematical terms this necessary information exactly corresponds
to the molecule species concentration distribution whereas the concentration is nothing
else than the accumulated species number divided by the total system volume.

In order to calculate the mentioned molecule concentration distribution the time evo-
lution of the chemical reaction system has to be determined. We tackle this problem by
simulating the chemical kinetics of a given reaction network. As simulation algorithm
we use a stochastic method described by Gillespie [5]. In his work Gillespie introduced
the Stochastic Simulation Algorithm SSA which is an essentially exact procedure for
numerically simulating the time evolution of a will-stirred chemically reacting system.
In theory this time behavior is described by the chemical master equation CME [18]
which is a set of coupled ordinary differential equations ODEs that cannot yet be solved
for every reaction system but only for a few very small and simple. In contrast the SSA
is a Monte Carlo type procedure that leads in principle to the same results as the CME.
However, as inherent for Monte Carlo type methods the precision of the particular out-
put depends on the number of realizations (figure 35). As a matter of fact this can also
lead to some sort of unsolvable problem when the calculation process takes too long to
terminate.
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Therefore we use an improved but approximate derivative method of the original SSA
called the explicit Poisson tau leaping (or simply τ leaping). As the name suggests this
algorithm does not simulate every single firing of reactions in the network but indeed
leaps over several reaction firings by advancing the system by a time step τ that is small
enough so that no significant changes in species numbers are missed. This so called leap
condition is quite stiff but has been studied in detail by Gillespie et al. in for instance
[21, 20, 18] and accelerates the simulation enormously.

Figure 35: Simulating the simple isomerization reaction (Species S gets destroyed). The
thin light blue line shows the correct theoretical solution. The two dashed
gray lines show the one-standard-deviation envelope predicted by the CME.
The red and blue jagged curves show two separate runs of the SSA.

For further acceleration in terms of simulation speed we additionally apply an adaptive
selection algorithm for the step size τ . This means that we do not always advance the
time by the same constant value τ but instead the step size depends on the slope of the
calculated time trajectories. Therefore a fast reacting network with consequently high
slopes in the trajectories is simulated in smaller time steps than a slow reacting system
in which the curves of time evolution represent small slopes.

As the elements of our artificial reaction network are modeled based upon graph
theory we first have to transform them into an appropriate form for the stochastic
simulation environment. In the following sections this transformation in terms of the
parts initialization vector, stoichiometry matrix and propensity function is described in
detail. The last subsection is dedicated to the fact that we had to develop an own
algorithm for terminating our simulation runs on quasi-equilibrium in terms of molecule
concentration.
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3.4.1. Initialization vector

The initialization vector has as many elements as there are molecule species in the
reaction network. Every element gives the number of particles the simulation should
start with.

In our application educts get assigned a high initial value upon which all other values
are scaled and products get assigned the particle number zero as they first have to be
created according to the particular reactions. Whether a molecule species belongs to the
educts or is a product is also identified by the reactions in the network. Molecules that
occur only on the right hand side in all involved reactions are therefore products and in
contrast educts are molecules that occur on the left hand side of at least one reaction.

3.4.2. Stoichiometry matrix

The stoichiometry matrix N represents the compact form of stoichiometries of reac-
tions. Supposed the reaction network consists of m reactions and n molecule species,
the matrix has m rows and n columns. Every cell of the matrix represents the numerical
stoichiometry of a particular molecule species in a particular reaction.

For the example reaction network below:

S1 → S2

5S3 + S2 → 4S3 + 2S2

S3 → 2S4

3S4 → S5

(12)

the stoichiometry matrix can be written as:

N =




−1 1 0 0 0
0 1 −1 0 0
0 0 −1 2 0
0 0 0 −3 1




in which the columns represent the molecule species S1 to S5 and the rows represent the
reactions in the same order as listed above. A cell value of -1 means that one molecule
of a particular species is destroyed during the reaction and hence a value of 1 means
that one molecule is produced.

Combined with the rate vector ν of a reaction network the stoichiometry matrix de-
scribes the rates of change of the molecule species S in the following compact equation:

dS

dt
= N · ν (13)

3.4.3. Propensity function

The product of the propensity function with dt gives the probability that a particular
reaction will occur in the next infinitesimal time dt.
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For almost every reaction = restrictions can be found in [22] = a propensity function
can be derived from the deterministic reaction rate equation [18]. It takes into account
the law of mass action and the probability that the molecules taking part in the reaction
actually collide with each other.

Below we see example reactions where X denotes molecule species and c denotes re-
action rate constants:

X1 + 2X2

c1⇀↽
c2

3X2

X3

c3⇀↽
c4

X2

(14)

The particular propensity functions are listed as a1 to a4 whereas x denotes the number
of particles of molecule species X:

a1 = c1
2
x1 · x2(x2 − 1)

a2 = c2
6
x2(x2 − 1)(x2 − 2)

a3 = c3x3

a4 = c4x2

(15)

Propensity functions only consider the reactants side of a reaction as it represents the
crucial chemical input. The factor dividing the reaction rate constant c arises from the
stoichiometric number for every involved species. For reaction a1 in equation (15) the
divisor 2 is the product of 1 for the factorial of only one molecule of species X1 and
2 for the factorial of two molecules of species X2. Furthermore to consider the colli-
sion probability of species X1 and X2 in the same equation a1 the variables x denoting
the particle numbers account for the function by answering the question: How many
ways are there to take one molecule out of all molecules for every contributing species
(times their stoichiometry)? As the stoichiometry for X1 is one the particle number x1

is taken without modification. For species X2 we have to take two molecules to fulfill
the stoichiometry. However, as we take out the first molecule of X2 there are only x2−1
molecules left for taking the second particle of this species, leading to the full propensity
function a1 = c1

2
x1 · x2(x2 − 1).

This procedure for forming the propensity function can be continued and expanded
respectively to represent a formal algorithm being applicable to every imaginable reac-
tion.

3.4.4. Equilibrium termination

Our application requires deterministic behavior in the sense that every run finishes at
least sometime but does definitely no run endlessly. On the whole this requirement
mainly depends on the runtime of the stochastic simulation of the chemical kinetics.
Therefore we strive for the earliest possible moment to stop the simulation but still get
a valuable result out of it. In fact the most valuable result of a kinetics simulation exists
at that time when there virtually are no more changes in molecule particle numbers.
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More exactly we can define the last sentence by considering the following two cases:

� Constant particle numbers of all molecule species: This circumstance can easily be
handled by comparing the current state of the simulated reaction network with the
previous state in the last simulation step. If there are only insignificant differences
between both states we can stop the simulation as we are in equilibrium.

� Cyclic changes of particle numbers: We hold a history of states of the simulated
reaction network and reversely look for repetitions in the lists of particle numbers
representing the states. As particle numbers are necessarily integral the equality of
two states is well defined. The algorithm looks for two more repetitions of one state
requiring the repeated states to be equal and equidistant by means of simulation
time steps. Finding such a repeating pattern therefore also stops the simulation.

In case such equilibrium is not reached within the simulated reaction network, i.e. the
molecule species concentrations do not converge or stabilize, the algorithm falls back to
an arbitrarily high end time for the simulation within which all reaction networks should
demonstrate a valuable result in the above declared sense. Therefore we can at least
guarantee a runtime much shorter than infinity.

3.5. Reaction Rate Calculation

As discussed earlier the simulation of chemical kinetics is needed to be able to model
reaction networks with evolutionary aspects. In our approach the evolutionary aspect of
the network pruning algorithm is the reason for the simulation of the network dynamics.
Exactly because of the necessity of a reasonable chemical simulation we also need reliable
reaction rate constants marking the chemical paths between the molecule species in the
reaction network. As we need reaction rate constants for every imaginable chemical
reaction the determination of them can only be computational. The mentioned reliability
can certainly be understood in many ways, however, our goal was not to calculate
exact reaction rates, as this requires quite clever and detailed physical experiments
and measuring, but instead we strove for deriving consistent reaction rates among the
reactions. This means that rates of reactions that run at double speed in nature, should
also have a factor of two between their calculated rates.

We achieve this by using quantum mechanical energy calculations [26] as they are
supposed to incorporate physical details about molecular structure. As outlined in
chapter 2.5 the reaction rate constant can be estimated once we know the molecule
energies contributing in the reaction. The Transition State Theory TST was established
in order to provide a more accurate description of consistent reaction rates than the
Arrhenius equation can do [27] and is therefore used in our application.

Nevertheless the basis for the calculation of a reaction rate constant via the transition
state theory is of course the knowledge of the transition state of a chemical reaction.
This problem is adopted in the following subsections.
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3.5.1. Transition State

In order to use the Transition State Theory for calculating reaction rate constants we
need to derive the transition state of a particular reaction. As mentioned previously the
transition state is not yet fully understood and therefore can only be estimated. We do
so by following Fujita’s proposal in [28] and derive the imaginary transition state1 ITS
from our chemical reactions. Since our chemical reactions are modeled as graph rewrite
rules the ITS is like all contributing molecules represented as a graph.

Within the reaction network expansion process the intrinsic step is done in the ap-
plication of the graph rewrite rule. There the educt molecules matching the left hand
side of the rewrite rule are taken to create the product molecules according to the right
hand side of the rule. Exactly in this moment all participating molecule species are
known and, probably even more important, the atom-atom mapping is known. The
latter means that for each atom on the educt side of the reaction we know which atom
on the right hand side it corresponds to.

C

C

C=CC=C CC1=CC=C=C=C1 CC1CCC=CC1

C=CC

x

x

x

o

oo

Figure 36: Example for a calculated imaginary transition state ITS of a Diels Alder
reaction of the depicted SMILES strings. In the ITS the transition of the
atom bonds is outlined via x symbols for broken bonds and o symbols for
created bonds.

Taking all this information into account we can now build up the imaginary transition
state by overlaying the educt molecules and the product molecules according to the
rewrite rule so that every involved atom also exists in the ITS. Furthermore our algorithm
sets up bonds of the highest occurring covalence between two atoms as proposed by
Fujita. The result of this algorithm is exemplified in the above figure 36.

If atoms a1 and a2 are connected by a single bond within the reactants and the same
atoms are connected by a double bond within the products the atoms a1 and a2 will also
be double bonded in the ITS because the double bond has a higher covalence than the
single bond.

1Fujita originally used the term Imaginary Transition Structure. However, we use the state-
nomenclature since the mentioned theory TST is also called Transition State Theory.
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3.5.2. Atom mapping

We have already learned about the atom mapping that exists during the application of
the graph rewrite rules to the molecule graphs in the reaction network when the network
is expanded. It appears in the moment when matching subgraphs of the left hand side
molecule graphs for the particular rewrite rule are found and put together according to
the rule to form the right hand side molecule graphs.

However, for reasons of software modularity we completely separated the reaction
rate calculation from the remaining algorithmic parts network expansion and simulation.
Thus we do not know anything about the atom-atom mapping when taking a particular
chemical reaction as input. Therefore the reaction rate calculation has to derive the
atom mapping for the given reaction on its own. For this task we use the subgraph
isomorphism algorithm proposed by Ullmann [17] to find isomorphic matches between
educts and products of the reaction. As shown in the following figure 37 the atom
mapping leads to the information of corresponding atoms of both reaction sides.

This information is required when running quantum mechanical energy calculations
because we advise the program jaguar to optimize the molecule and transition state
geometry and jaguar identifies corresponding atoms through the given atom-atom map-
ping.
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Figure 37: Example for an atom-atom mapping in a Diels Alder reaction of depicted
educts and products. The molecules and atoms respectively are colored red
and blue to indicate their overlay as seen in the product molecule according
to the particular graph rewrite rule.
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4. Interfaces & Data structures

In this chapter we describe the software interfaces to external components used in our
application. The technologies and programming languages of these interfaces range from
C++ libraries to command line calls of Perl scripts.

4.1. Graph Grammar Library

The graph grammar library GGL [10] provides various functionalities regarding molecu-
lar graphs and chemical graph transformations, such as parsing SMILES strings to graphs
or subgraph isomorphism or applying graph transformations to molecular graphs. Inter-
nally it uses data structures of the Boost Graph Library BGL for storing and handling
graphs and furthermore it uses the subgraph matching library sgm (internally VFLib
2.0) for finding rewrite rule patterns in host graphs. The package also contains the
application toyChem [6], that implements parts of a chemical toy-universe in terms of
expanding sets of molecule species within a chemical reaction network. Furthermore the
library extensively uses the template mechanism of C++ which makes it flexible and
adaptable for a great variety of related problems. The GGL is written in C++ and is
mainly developed by Martin Mann (Albert-Ludwigs University Freiburg) and Christoph
Flamm (University of Vienna).

Class ggl::chem::Molecule

The Molecule class is one of the core classes and holds the information about the molec-
ular graph. It is defined as boost:: adjacency list representing an undirected graph and
storing properties for vertices and edges. The GGL consists of methods e.g. for generat-
ing a Molecule object out of a SMILES string or generating a unique/canonical SMILES
string from a Molecule object.

©
typedef boost : : a d j a c e n c y l i s t <

boost : : vecS , // s t o r e edges
boost : : vecS , // s t o r e v e r t i c e s
boost : : undirectedS , // i s an und i rec ted graph
Graph NodeProperties , // atom symbols e t c
Graph EdgePropert ies // edge symbols e t c

> Molecule ;
ª

Class ggl::chem::Reaction

A Reaction object describes the essential information about a chemical reaction. Besides
the reactant and product molecules in terms of their SMILES strings, the Reaction class
also defines properties for the imaginary transition state and the reaction rate of the
chemical reaction. Furthermore the string ID of the corresponding graph rewrite rule
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that has led to the particular reaction, is stored as outlined in the following listing.

©
class Reaction {

public :
/* ! the i d e n t i f i e r o f the gg l : : chem : : ChemRule ru l e that was
* app l i ed in t h i s r e a c t i on . */

std : : s t r i n g r u l e i d ;

// ! the SMILES o f the molecu le s invo lved in t h i s r e a c t i on
std : : mul t i s e t< std : : s t r i n g > metabo l i t e s ;

// ! the SMILES o f the produced molecu le s o f t h i s r e a c t i on
std : : mul t i s e t< std : : s t r i n g > products ;

// ! the ra t e o f the r e a c t i on
double r a t e ;

// ! The SMILES o f the t r a n s i t i o n s t a t e along the r e a c t i on .
// ! I t i s used to c a l c u l a t e appropr ia te r e a c t i on r a t e s .

s td : : s t r i n g t ran sS ta t e ;
} ;

typedef std : : set< Reaction > React ion Conta iner ;
ª

Class ggl::chem::ChemRule

The ChemRule class represents a graph rewrite rule in terms of boost-graphs. It de-
scribes the left and the right hand side and the context of the rule due to deriving from
superclass Rule. Static methods allow for checking chemical reason of the transformation.

©
template<> class ChemRuleT : public RuleT<> {

public :
// ! checks con s i s t ency o f the r ewr i t e r u l e ( i . e . balanced
// ! e l e c t r on changes and bond/atom l a b e l s )

s i z e t i sCon s i s t e n t ( void ) const ;

// ! a c c e s s the minimal imaginary t r a n s i t i o n s t a t e o f t h i s r u l e
const Trans i t i onSta t e& ge tTran s i t i onS ta t e ( ) const ;

} ;

typedef ChemRuleT<> ChemRule ;
ª

55



Class ggl::chem::LeftSidePattern

The class LeftSidePattern implements an interface of the subgraph matching library sgm
to search for the left hand side of a given rewrite rule. Moreover it gives access to the
graph automorphism of a certain rule and to the specified constraints that need to be
considered when matching the pattern.

©
template < class RULE = Rule >
class LeftSidePatternT : public sgm : : Graph Inte r face {

public :
virtual sgm : : GA OrderCheck getGraphAutomorphism ( void ) const ;

virtual const std : : vector< RuleConstra int > &
getMatchConstraints ( void ) const ;

} ;

typedef LeftSidePatternT<> Le f tS idePat te rn ;
ª

Function applyRules

The method applyRules is the main entry point for expanding a reaction network of
specified molecule species and reactions in terms of specified graph rewrite rules. The
declaration of the methods signature is outlined in the listing below.

©
void
applyRules ( const RulePatternMap & ru l e s

, const SMILES container & i n i t i a lMo l e c u l e s
, SMILES container & producedMolecules
, React ion Conta iner & producedReact ions
, const React ionRateCalcu lat ion * ra teCa lc
) ;

ª

The method takes a set of initial molecules, a set of rewrite rules and optionally an
object specifying a reaction rate calculation method as input and applies all rules to
the set of molecules. The resulting molecule species as well as the thereby produced
reactions are provided as output.

4.2. StochKit

StochKit [24] is an efficient, extensible stochastic simulation framework developed in
the C++ language with the aim to make stochastic simulation accessible to practicing
biologists and chemists. It provides Gillespie’s popular stochastic simulation algorithm
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SSA and a few optimized derivatives such as the tau-leaping methods. As a high-quality
source for pseudo-random numbers the Scalable Parallel Random Number Generator
library SPRNG is used internally. Furthermore the framework contains tools that make
stochastic simulation more convenient. Among these tools are a java converter from an
SBML file to the StochKit input format and MATLAB scripts to quantify differences in
statistical distributions to verify results of the stochastic solver. StochKit is developed
by Linda Petzold’s group at the University of California, Santa Barbara.

Class Vector

The class Vector is a base class of StochKit that represents a linear array of real values.
All mathematical operators, like the sum of two arrays or dividing all elements of an array
by a constant value, are implemented to provide full usability in terms of mathemat-
ics. Vector objects are for example used to represent a state of molecule species numbers.

©
class Vector
{
public :

Vector ( int s i z e , double i n i tVa l ) ;

private :
int mSize ;
double* mData ;

} ;
ª

Class Matrix

Class Matrix in the StochKit framework represents a two-dimensional array of real values.
Again all mathematical Scalar-Matrix and Matrix-Matrix operators are implemented.
Moreover not only single fields of the matrix can be accessed, but also whole rows or
columns. Matrix objects are for example used to represent the stoichiometry matrix ν
as explained in chapter 3.4.2.

©
class Matrix
{
public :

Matrix ( int rows , int co l s , double i n i tVa l ) ;

private :
int mRows ;
int mCols ;
double* mData ;

} ;
ª
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Class ReactionSet

A ReactionSet object contains all possible reaction channels in a system. Each reaction
channel is characterized by the propensity function (a function pointer - see chapter 3.4.3
for details) and by the state change vector, that is calculated in each step according to
the propensity function and the stoichiometric matrix ν.

©
class React ionSet
{
public :

React ionSet ( const Matrix& nu ,
const Matrix& dg ,
PropensityFunc prop ,
Part ia lPropens i tyFunc pprop ,
PropensityJacobianFunc propJac ,
Equil ibriumFunc equ i l i b r ium ) ;

React ionSet ( const Matrix& nu ,
PropensityFunc prop ) ;

} ;
ª

Structure SolverOptions

By setting up a SolverOptions object the actual stochastic simulation is parameterized.
The configuration is done by selecting simulation and output methods, like step-size
selection, and setting various simulation parameters. Predefined values can be used by
calling method ConfigStochRxn(int fixedoption) to create a SolverOptions object.

©
struct SolverOpt ions
{

Steps i z eSe l e c to rFunc s t e p s i z e s e l e c t o r f u n c ;
SingleStepFunc s i n g l e s t e p f u n c ;
StoreStateFunc s t o r e s t a t e f u n c ;
double ab s o l u t e t o l ;
double r e l a t i v e t o l ;
double ep s i l o n ;
double i n i t i a l s t e p s i z e ;
int p r o g r e s s i n t e r v a l ;
int StepControl ;

} ;
ª
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Function StochRxn

The method StochRxn computes one realization of the stochastic simulation. The pa-
rameters are the initial vector, finish and end time, a ReactionSet and of course the
options for the simulation. After the simulation has finished, a simulation history is
returned, that can also directly be written into a text file.

©
So lu t i onH i s to ry StochRxn ( const Vector& x0 ,

double t0 ,
double t f ,
const React ionSet& reac t i on s ,
const SolverOpt ions& opt ions ) ;

void WriteHi s to ryF i l e ( const So lu t i onH i s to ry& hi s t ,
const std : : s t r i n g& fi leName ) ;

ª

Function CollectStats

The method CollectStats computes possibly many realizations of the stochastic simula-
tion. Therefore the additional parameter runs has to be considered. After all realizations
of the simulation have finished, a list of endpoint vectors1 per run, is returned, that can
also directly be written into a text file.

©
EndPtStats Co l l e c t S t a t s (unsigned int runs ,

const Vector& x0 ,
double t0 ,
double t f ,
const React ionSet& reac t i on s ,
const SolverOpt ions& opt ions ) ;

void WriteStatF i l e ( const EndPtStats& s ta t s ,
const std : : s t r i n g& fi leName ) ;

ª

4.3. OpenBabel

Open Babel [25] is a chemical toolbox designed to speak and understand the wide range
of languages and formats of chemical data. It is an open source project that provides
ready-to-use programs and libraries to handle molecular chemistry related data. Main
achievements are the conversions between many different chemical file formats and the
existing ports of the library and tools for actually all popular programming languages,
such as C++, Java, Python, . . .

1The endpoint vector only contains the last states in molecule species populations, not the whole
history.
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Class OpenBabel::OBConversion

The purpose of the OBConversion class is to convert chemical objects (derived from
OBBase) from one format to another. It defines methods to directly convert whole
files or strings and also methods to read a chemical object of a specified format first,
manipulate it (e.g. add implicit hydrogen atoms) and afterwards write it in another
format to some stream object. ©

OBConversion conv(&in ,&out ) ; // i s t ream /ostream ob j e c t s

// setup conver s i on from SMILES to MOL format
i f ( conv . SetInAndOutFormats ( ”SMI” , ”MOL” ) )
{

OBMol mol ;
i f ( conv . Read(&mol ) )
{

// . . . manipulate molecule
}
conv . Write(&mol ) ;

}
ª

Class OpenBabel::OBMol

The OBMol or just molecule class is said to be the most important class in Open Babel.
It is designed to store all information associated with a molecule that can also be read
from some formats. OBMol defines quite lot methods for getting and setting information
about a molecule and for adding and accessing included atoms and bonds. ©

OBMol mol ;
double molWeight = mol . GetMolWt( true ) ; // add hydrogens i m p l i c i t l y
OBAtom* atom = mol . GetAtom ( 0 ) ; // ac c e s s atoms

ª

Class OpenBabel::OBForceField

Class OBForceField is the base class for molecular mechanics in Open Babel. Classes
derived from OBForceField implement specific force fields (Ghemical, MMFF94, UFF)
with specific working field and applicability. After selecting a force field it can be used
to minimize a molecule’s structure and calculate the energy of the structure. ©

OBMol mol ;
OBForceField* pFF = OBForceField : : F indForceFie ld ( ”Ghemical” ) ;
i f ( ! pFF) // e x i t . . .

i f ( ! pFF−>Setup (mol ) )
c e r r << ”ERROR: could not setup f o r c e f i e l d . ” << endl ;

double molEnergy = pFF−>Energy ( ) ;
ª
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4.4. CORINA

CORINA is a 3D structure generator for small and medium sized molecules. Its ro-
bustness, comprehensiveness, speed and performance helped CORINA to establish as
a world-wide recognized quasi-standard in industry and academia. This significance
in generating three-dimensional molecular models of high quality has also led to wide-
spread usage in well-known pharmaceutical and chemical companies, such as Symyx
or the NCI/NIH. The latter also provides web services utilizing CORINA for various
conversions and generation of molecular structures.

The web services of the National Cancer Institute NCI are centralized as CADD Group
Chemoinformatics Tools and User Services CACTUS. The web service using CORINA
internally is called Chemical Identifier Resolver1 and allows one to convert some chem-
ical structure identifier into another representation. The structure identifier might be
a SMILES string, a Standard InChI or a chemical name like sodium chloride or ben-
zene. Output representations are for instance graphic images or the MDL structure-
data file SDF. A SDF consists of the 3D coordinates and adjacency information of a
set of atoms forming one or more molecules. To convert now a SMILES string into the
three-dimensional molecular structure of a molecule, which we suppose to be the main
use case, the following URL calls the corresponding NCI web service.

The SMILES string for the small molecule methanol is simply CO. Therefore the query
URL is:

http://cactus.nci.nih.gov/chemical/structure/CO/sdf

which results in a SD File with the following content:

©
CH4O
APtclcactv06011015392D 0 0.00000 0.00000

6 5 0 0 0 0 0 0 0 0999 V2000
3.4030 0 .2500 0 .0000 C 0 0 0 0 0 0 0 0 0 0 0 0
2 .0000 0 .0600 0 .0000 H 0 0 0 0 0 0 0 0 0 0 0 0
2 .5369 −0.2500 0 .0000 O 0 0 0 0 0 0 0 0 0 0 0 0
3 .7130 −0.2869 0 .0000 H 0 0 0 0 0 0 0 0 0 0 0 0
3 .9399 0 .5600 0 .0000 H 0 0 0 0 0 0 0 0 0 0 0 0
3 .0930 0 .7869 0 .0000 H 0 0 0 0 0 0 0 0 0 0 0 0

1 3 1 0 0 0 0
2 3 1 0 0 0 0
1 4 1 0 0 0 0
1 5 1 0 0 0 0
1 6 1 0 0 0 0

M END
$$$$

ª

1Web page http://cactus.nci.nih.gov/chemical/structure/documentation
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4.5. Jaguar

Jaguar is a high-performance ab initio electronic structure package for both gas and
solution phase simulations [26]. The particular strength in treating metal containing
systems make it one of the most practical quantum mechanical tools for solving real-
world problems.

Even though molecular mechanical methods, like the force field calculations, have im-
proved in the last decades, they are still approximations and their calculation results
extremely depend on the particular model and parameterizations. Therefore impor-
tant research questions remain and cannot be answered without examining in detail
a molecule’s electronic structure. In conclusion high-level quantum mechanics is still
the most accurate and most direct way to study even challenging systems, despite the
increased computational cost. Therefore an efficient quantum mechanical program is in-
dispensable for research in reactive chemistry, chemical reaction systems or phenomena
that require precise energetics such as reaction rate calculations.

The jaguar package consists of tools and scripts performing the actual calculation.
At first the following environment variables need to be set on the UNIX system:

export SCHRODINGER=/path/ to / the / d i r e c t o r y / o f /your/ jaguar / i n s t a l l a t i o n
export SCHRODINGER TMPDIR=/path/ to /some/ s c ra t ch / d i r e c t o r y

In the next step the input files for jaguar have to be created, which is described in
detail in appendix D. In general an input file starts with a section of parameters adjust-
ing the quantum mechanical calculation and telling jaguar what exactly to calculate,
followed by the specification of the molecular data. The molecular data jaguar needs is
only a list of all involved labeled atoms with 3D coordinates = adjacency information,
bond types and all other information are extracted from the spatial arrangement of the
atoms.

Depending on the commands specified in the input file jaguar can then minimize/op-
timize a molecular structure, derive a transition state for a chemical reaction or calculate
various energy types and other physical parameters for the given set of molecules. The
following commands can be used to run jaguar and extract specific results from the
calculation:

$SCHRODINGER/ jaguar run −WAIT <input f i l ename>
$SCHRODINGER/ jaguar r e s u l t s <option> <input f i l ename >. out

The input filename has to be specified without an extension when calling jaguar, i.e.
suppose the input file is called methane.in, then the run-command has to be executed
with parameter methane only. The ”-WAIT” parameter tells the command to return
not until finished. At the results command of jaguar an option has to be specified,
for instance ”-gibbs” to get the Gibbs free energy or ”-coords” to get the optimized
geometry, and the output file of the calculation has to be given as methane.out in our
example.
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5. Software

5.1. StochGraphLab

5.1.1. Architecture overview

Hereby we briefly describe the overall architecture implemented in the presented work
before going into detail in the following sections. As depicted in figure 38 our main
application covers the parts: reaction network generator, reaction rate calculation and
links to a web service. Whereas the web service for embedding molecular structures
with CORINA and the rate calculation server are only peripheral services, the reaction
network generator represents the actual application of simulating chemical reaction net-
works. As describes earlier this simulation further consists of expanding the reaction
network by applying graph transformations to a set of molecule species, simulating the
network dynamics in terms of concentration distribution among the molecule species
and the essential network pruning to shrink the network size before expanding again.
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Figure 38: Rough overview of the whole application consisting of the reaction network
generator, web services and a reaction rate calculation server.

5.1.2. Application

Our main application is called StochGraphLab, which stands for Stochastic Graph based
artificial Laboratory. The single parts of the abbreviation already anticipate the core
ideas and approaches of the software. In generalization of the aims of the presented
thesis, we do not limit our software to special prebiotic reaction networks, but we indeed
support every imaginable reaction network. Therefore our software represents some kind
of a laboratory were chemists put some initial molecules into a vessel, create some en-
vironmental circumstances and look at the outcome. Because we model molecules as
graphs and chemical reactions as graph transformations, we further call the software
graph based. Finally to demonstrate real chemical and physical behavior the application
runs stochastic simulations on the reaction networks = that is where the term stochastic

63



comes from. Altogether the presented software represents a fully featured chemical reac-
tion network generator as proposed by Faulon and Sault [4]. Additionally our software
analyzes cycles occurring in the reaction network, helping to identify possible auto-
catalytic cycles. In the figure below the overall application flow of the StochGraphLab
is outlined.
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Figure 39: Main application flow of the Concentration Reaction Network Generator in
the StochGraphLab. After initializing the used variables the main loop of
expanding, simulating and pruning the reaction network is entered. If no new
molecule species or reactions are produced, the application run has finished.

StochGraphLab is written in C++ and is developed using the Eclipse Platform 3.4.0
with the CDT (C/C++ Development Tools) PlugIn and Cygwin Tools on Windows XP
with the GNU Compiler Collection GCC Version 4.3.2.

In the subsequent sections the individual modules and functionalities of the StochGraphLab
are described. On the one hand to present each contained module separately and on the
other hand to give the reader a more detailed insight in the applications parts.
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5.1.3. Modules

Species

The class Species represents a molecule species and stores some chemical properties, such
as the molecule weight. Furthermore the corresponding SMILES string and the molec-
ular graph are stored at a Species object.

©
class Spec i e s
{
public :

s td : : s t r i n g name ; // SMILES s t r i n g
gg l : : chem : : Molecule molecule ; // molecu lar graph
double concent ra t i on ; // s p e c i e s concent ra t i on

double getWeight ( ) const ;
double getEnergy ( ) const ;

// Parse s p e c i e s l i s t from input f i l e .
stat ic void
Par s eSpe c i e sL i s t ( const std : : s t r i n g &input ,

Sp e c i e sL i s t &r e t L i s t ) ;

// Convert a l i s t o f Spec i e s i n to a l i s t o f SMILES s t r i n g s
stat ic void
Spec i e sL i s tToSmi l e sConta iner ( const Spe c i e sL i s t &spec i e s ,

SMILES container &smi l e s ) ;
}

ª

NetworkOperator

Class NetworkOperator defines static methods for operations on reaction networks. The
main methods are depicted in the following listing.

©
class NetworkOperator
{
public :

stat ic void ExpandNetwork ( . . . ) ;
stat ic void PrePruneNetwork ( . . . ) ;
stat ic void PostPruneNetwork ( . . . ) ;
stat ic void AnalyzeNetwork ( . . . ) ;

}
ª
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The method ExpandNetwork expands a network by applying graph rewrite rules to a
set of molecule graphs of the network. As outlined in the listing, the rewrite rules
are converted to a RulePatternMap object before calling the GGL-method to expand
the reaction network. Parameter newRules is currently always empty, because at the
moment no new graph rewrite rules are derived from the species in the network.

©
void ExpandNetwork ( Sp e c i e sL i s t &a l l S p e c i e s ,

Ru l eCo l l e c t i on &ru l e s ,
Sp e c i e sL i s t &newSpecies ,
Ru l eCo l l e c t i on &newRules ,
React ion Conta iner &producedReact ions )

{
SMILES container t a r g e tSmi l e s ;
SMILES container producedSmiles ;

Spec i e s : : Spec i e sL i s tToSmi l e sConta iner ( a l l S p e c i e s , t a r g e tSmi l e s ) ;

// ho lds the l e f t s i d e pat t e rns o f the g iven r u l e s
RulePatternMap ru l ePat t e rn ;

// c a l l to the graph grammar l i b r a r y GGL
applyRules ( ru lePattern , ta rge tSmi l e s , producedSmiles ,

producedReactions , NULL) ;
}

ª
The purpose of both methods PrePruneNetwork and PostPruneNetwork is actually the
same, i.e. shrinking the network in terms of size by removing molecules species. Note,
that also reaction objects are removed from the network, if a species, that needs to be
removed, is a reactant of this reaction. Hence, other species that are created only by this
reaction are also removed from the network. The methods implement different pruning
strategies and are, for the reason of optimizations, called before the stochastic simulation
(PrePruneNetwork) and afterwards (PostPruneNetwork) respectively.

©
void PrePruneNetwork ( Sp e c i e sL i s t &network ,

Sp e c i e sL i s t &newlyAdded ,
React ion Conta iner &r e a c t i o n s ) ;

void PostPruneNetwork ( Sp e c i e sL i s t &network ,
Sp e c i e sL i s t &newlyAdded ,
React ion Conta iner &r e a c t i o n s ) ;

ª
The method AnalyzeNetwork searches for cycles in the reaction network in terms of
reaction paths starting at some molecule species and finally getting back to the origin.
The algorithm for this search is a brute-force-type and requires the reaction network to be
transformed into the substrate graph form in which only molecule species (vertices) and
reactions (edges connecting molecule species) exist, but no extra vertices for reactions
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themselves, as depicted in figure 17. The algorithm minds minimum and maximum steps
for a cycle in the search and is able to ignore or consider directions of the reactions. In
the code a cycle is represented as list of unique molecule species and a corresponding list
of all reactions this species is involved in the particular cycle: map<Species*, set<int> >.

©
void AnalyzeNetwork ( Sp e c i e sL i s t &network ,

const React ion Conta iner &reac t i on s ,
vector< map<Spec i e s * , set<int> > > &a l lCy c l e s ) ;

ª

QuantumMechanics

The class QuantumMechanics provides methods and constants useful for quantum me-
chanical calculations. As outlined in the following listing the only method is CalculateRate
that takes a chemical reaction object as input and returns the reaction rate as real value.

©
class QuantumMechanics
{
public :

stat ic double CalculateRate ( const gg l : : chem : : Reaction &r ea c t i on ) ;
stat ic const double R = 8.314472 ; // [R] = J / (mol*K)

}
ª

We have already mentioned that all reaction rates are calculated on a separate calculation
server and therefore need not be computed in the StochGraphLab application itself.
Because the rate calculation server is a TCP server the communication between the
calculation server and the main application uses the TCP/IP-protocol.

©
#include <sys / socket . h>
#include <ne t i n e t / in . h>
#include <arpa/ i n e t . h>

double CalculateRate ( const Reaction &r ea c t i on )
{

. . .
// open TCP socket
int sock fd = socket (AF INET, SOCK STREAM, 0 ) ;
// connect to s e r v e r
connect ( sockfd , ( struct sockaddr*)& serv addr , s izeof ( s e rv addr ) ) ;
// post r eque s t to s e r v e r
int n = wr i t e ( sockfd , r eque s t . c s t r ( ) , r eque s t . s i z e ( ) ) ;
// read answer from se rv e r ( s t r i n g encoded r e a c t i on ra t e )
n = read ( sockfd , bu f f e r , s izeof ( bu f f e r ) ) ;
. . .

}
ª
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The format of the request string was chosen to contain educt-side, transition state and
product-side of the reaction in terms of SMILES strings delimited by a space ” ”, and
the single molecules in a group delimited by a dot. The request string for a simple Diels
Alder reaction is therefore:

CC(=C)C=C.CC=C C[C]1=[C][C]=[C]=[C](C)=[C]1 CC1CCC=C(C)C1

The reaction rate returned by the calculation server is simply a real value that only
needs to be parsed in the application.

DynamicSimulator

Class DynamicSimulator defines the method SimulateNetwork for running a stochastic
dynamics simulation on the given reaction network. Therefore the reaction network,
represented by the list of known species and reactions, first has to be converted into the
data structures usable by the StochKit methods described in chapter 4.2. According to
the algorithm outlined in 3.4.2 the stoichiometry matrix nu is derived from the given
reaction network. Within this method for every reaction in the reaction network also
the reverse reaction is considered and furthermore simulated, in order to simulate also
the backward direction of a reaction path. The private method GetPropensity serves as
function pointer defining the propensity functions of the reaction network, as described
in chapter 3.4.3. The initial vector x0 specifying the particle numbers at the beginning
of the simulation is filled according to the simulated concentration of the last iteration of
network generation if the species is already known. Otherwise the initial number is set
to 0 for species being only reaction products in the whole network or to concentration 1
respectively if the species is a reactant in at least one reaction.

©
class DynamicSimulator
{
public :

stat ic void SimulateNetwork ( Sp e c i e sL i s t &network ,
const React ion Conta iner &reac t i on s ,
int i t e r a t i o n ) ;

private :
stat ic Vector GetPropensity ( const Vector& x ) ;

}
ª

Before starting the actual simulation run, the stochastic solver of StochKit is configured
to run in the adaptive mode of explicit tau-leaping, which means automatic step-size
selection and switching between exact SSA and tau-leaping, depending on the speed of
changes in the reaction network.

©
SolverOpt ions opt = ConfigStochRxn ( 0 ) ; // 0 . . . adapt ive mode

ª
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Furthermore the final time for the simulation is set to ”-1”, which indicates StochKit to
end the simulation when detecting a steady state. This behavior was implemented in
StochKit within this thesis and is no standard feature.

©
React ionSet rxns (nu , GetPropensity ) ;
So lu t i onH i s to ry h i s t = StochRxn (x0 , 0 , TimeFinal , rxns , opt ) ;

ª

Resources & Miscellaneous

The Resources class holds static members allowing the StochGraphLab application to be
parameterized. Moreover the parameterization data can be accessed from all modules
in the application. All members are initialized in the main method of StochGraphLab.
Module Miscellaneous defines general purpose helper methods for the StochGraphLab,
such as checking the rewrite rules for chemical correctness or reading the various input
files.

5.1.4. Input file formats

In this section the different input file formats to the StochGraphLab application are
described. Every format is described briefly and exemplified for clarification.

Initial species list

The initial species list is an ASCII file specifying each molecule species represented by
its SMILES string in an own line. The following listing exemplifies two alkene molecules.

©
C=C(C)C=C
C=C(C)

ª

Initial species concentration

An ASCII file for specifying an initial concentration for molecule species used for the
stochastic simulation. Each line contains of the canonical SMILES string for identifying
the species and, separated by a tabulator character, the corresponding initial concentra-
tion as real value.

©
C=C(C)C=C \ t 0 .54
C=C(C) \ t 0 .02

ª

Graph rewrite rules

As file format for representing graph rewrite rules the Graph Modeling Language or Graph
Meta Language GML was chosen [11]. GML is a hierarchical ASCII-based file format for
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describing graphs. As GML supports attaching arbitrary information to graphs, nodes
and edges, it can also be used to store information about graph transformations.

23

4

5 6
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C O
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O

O

O
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C

C

C

C

C

C

1

©
r u l e [

ru leID ” a l d o l add i t i on ”
l e f t [

edge [ source 1 t a r g e t 2 l a b e l ”−” ]
edge [ source 2 t a r g e t 3 l a b e l ”−” ]
edge [ source 3 t a r g e t 4 l a b e l ”=” ]
edge [ source 5 t a r g e t 6 l a b e l ”=” ]

]
context [

node [ id 1 l a b e l ”H” ]
node [ id 2 l a b e l ”O” ]
node [ id 3 l a b e l ”C” ]
node [ id 4 l a b e l ”C” ]
node [ id 5 l a b e l ”C” ]
node [ id 6 l a b e l ”O” ]

]
r i g h t [

edge [ source 1 t a r g e t 6 l a b e l ”−” ]
edge [ source 2 t a r g e t 3 l a b e l ”=” ]
edge [ source 3 t a r g e t 4 l a b e l ”−” ]
edge [ source 4 t a r g e t 5 l a b e l ”−” ]
edge [ source 5 t a r g e t 6 l a b e l ”−” ]

]
constra inNode [

id 5
op =
count 1
nodeLabels [ l a b e l ”O” ]

]
]

ª
The above listing outlines the notations for left and right hand side and context of a
rewrite rule. Furthermore a constraint, as suggested in the theory chapter, is defined,
restricting the number of oxygen atoms adjacent to the carbon atom with ID 5 to be
exactly one (i.e. the one oxygen atom with ID 6).

Reaction rate table

The reaction rate table file serves as a mapping of rewrite rule IDs to rates and reverse
rates. As only rules can be addressed as a whole (i.e. every reaction a rule generates)
and not single instances of reactions, this possibility of setting reaction rates only makes
sense for testing purpose.

©
a l d o l a dd i t i o n \ t 0 .314 \ t 1 . 3 e−12

ª
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5.2. Reaction Rate Calculation Server

The reaction rate calculation counts among the core modules of the whole application
because of its importance for running relevant stochastic simulations. As outlined in
the rough overview of figure 38 the rate calculation is implemented as TCP/IP server
in the script language Perl. The interface of the rate calculation is the SMILES string
encoded reaction including the educts, products and optionally the transition state as
described in the section QuantumMechanics of the StochGraphLab. Additionally also
the reaction temperature can be specified, but is currently not considered as mentioned
later on. For the functionality the Perl script uses particular Perl modules besides the
standard modules warnings and strict .

©
use LWP: : Simple ;
use IO : : Socket ;
use Net : : hostent ;

use Chemistry : : F i l e : : SDF;
use Chemistry : : Inte rna lCoords : : Bu i lder ’ bui ld zmat ’ ;
use Chemistry : : ReactionGrammar : : Mol ;
use Chemistry : : ReactionGrammar : : Reaction ;
use Chemistry : : ReactionGrammar : : Mapper : : CSL ;
use Chemistry : : ReactionGrammar : : RewriteRule ;

ª
Module LWP::Simple contains methods for posting web requests and fetching answers
from web services. TCP server functionality is covered by the modules IO::Socket and
Net::hostent and is setup with the following constructor code.

©
my $ s e rv e r = IO : : Socket : : INET−>new( Proto => ’ tcp ’ ,

LocalPort => $PORT,
L i s t en => SOMAXCONN,
Timeout => 60*60*24 , # s e c s .
Reuse => 1 ) ;

ª
The modules contained in the Chemistry package are provided by my colleague Heinz
Ekker and do on the one hand represent wrappers around the well known PerlMol
package [52] and on the other hand provide representations for reactions and the atom-
atom mapping in particular reactions.

After receiving the input reaction string the single molecule SMILES strings are parsed
and converted to the respective SD File content, containing the 3D structural informa-
tion, using the CACTUS web service of the NCI. To post the web request the SMILES
string of a molecule has to be URL-escaped.

©
my $content = get (

”http :// cactus . nc i . nih . gov/ chemical / s t r u c tu r e /$SMILES/ sd f ” ) ;
ª
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As the molecules are converted separately, due to errors in the CORINA web service1,
but nonetheless needed in a common spatial context for the latter quantum mechanical
calculations, they are simply placed along one axis at a distance of 100 Angstrom Å per
50 atomic mass units amu. The atoms in the resulting molecules are relabeled using
the elementary symbol and a consecutive number, required by the quantum mechanics
program jaguar.

The previous step is applied to the reactants and the products first. If a transition
state of the particular reaction is passed to the calculation server as well, it can also be
converted to the structural data. Otherwise the transition state is deduced by deriving
a graph rewrite rule from the reaction and converting the completely expanded context
of the rule back to a molecule. The following listing shows the conversion of SMILES
string encoded molecules to Chemistry::Mol objects.

©
my @gml educts = Chemistry : : Mol−>parse ( $educts SMILES string ,

mo l c l a s s => ’ Chemistry : : ReactionGrammar : : Mol ’ ,
format => ’ smi l e s ’)−> s epara te ;

my @gml products = Chemistry : : Mol−>parse ( $products SMILES string ,
mo l c l a s s => ’ Chemistry : : ReactionGrammar : : Mol ’ ,
format => ’ smi l e s ’)−> s epara te ;

ª
Using the converted molecule objects a reaction object is created. During the deter-
mination of the mapping the atom identifiers of the reactant atoms are written to the
corresponding atoms of the product molecules.

©
my $gmlreact ion = Chemistry : : ReactionGrammar : : Reaction−>new(

educts => \@gml educts ,
products => \@gml products

) ;

# determine the atom−atom mapping o f the r e a c t i on
my $mapper = new Chemistry : : ReactionGrammar : : Mapper : : CSL(

remember sp l i t s => 1 ) ;
$gmlreact ion = $mapper−>map( $gmlreact ion ) ;

ª
If the finally derived transition state has the same number of atoms as the educts or
products it can be considered for further computations. Now the atom-atom mapping
between educts and transition state and between transition state and products is exam-
ined. If the transition state is unusable the mapping is only calculated between educts
and products. This mapping information is needed for the quantum mechanics calcula-
tion when creating the input files for jaguar, because it requires corresponding atoms of
the molecules to occur in the same order in the input file (see appendix D for examples).

1The CACTUS web service places separate molecule to close to each other if they are larger than about
200 amu. The potentially leads to errors in calculations of jaguar regarding physically unreasonable
atomic coordinates.
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A jaguar input file contains a general section containing job commands and parame-
ters and sections for the molecular data represented by enumerated atoms and their 3D
coordinates. Within the whole rate calculation various input files are created in order
to compute the following information:

� Optimize geometry of the transition state

� Optimize geometry of the educts

� Calculate the Gibbs free energy of the transition state

� Calculate the Gibbs free energy of the educts

Finally the reaction rate constant is calculated applying the Transition State Theory as
outlined in 2.5.2. Additionally the rate constant is divided by the Avogadro constant
NA to regard the system volume. Before sending the result back to the client application
the rate is also cached in memory and in a persistent file to reduce the server response
time for another request of an already calculated reaction rate constant.

5.3. Tools

Besides the main application StochGraphLab to run the actual simulations of a chemical
reaction network, there are developed a few additional tools for the purpose of preparing
test networks and helping to finally evaluate results. Those tools are briefly described
in the subsequent sections.

5.3.1. ChemkinLib

CHEMKIN is a commercial Cheminformatics software developed by the Sandia National
Laboratories [54]. It is used to solve and describe reaction kinetics and is mainly used
for combustion processes. CHEMKIN also defines a thermodynamic database and a file
format in which reaction networks can be expressed.

The ChemkinLib is written in Java and provides access to CHEMKIN files through
a parser and corresponding classes representing the file content. It also contains a
test application to show the usage of the library (described in detail in appendix B).
Internally the ChemkinLib uses the Chemical Development Kit library CDK [53] for
chemical data representations.

The class ArrheniusEquation represents the kinetic parameters in a CHEMKIN file and
allows to calculate the reaction rate constant from the given parameters.

©
public class ArrheniusEquation
{

public double A, T, b , E;
public EnergyUnit un i t ;

public double GetReactionRateConstant ( ) ;
}

ª
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The class KineticReaction extends the Reaction class defined in the Chemistry Devel-
opment Kit CDK package [53] and adds the reaction rate and a string representation.

©
public class Kinet i cReact ion extends Reaction
{

protected ArrheniusEquation ra t e ;
protected St r ing Or i g i na lS t r i ngRepr e s en ta t i on ;

}
ª

A CHEMKIN file is represented as ChemkinFile object that covers all information avail-
able in the particular file. A ChemkinFile can be initialized directly from a CHEMKIN
file by using the parser.

©
public class ChemkinFile
{

public St r ing FileComment ;
public Vector<IElement> Elements ; // Chemical e lements
public Map<Str ing , IMolecule> Spec i e s ; // Molecule s p e c i e s
public Vector<Kinet icReact ion> React ions ;

public ChemkinFile ( S t r ing f romFi l e ) throws Exception
}

ª
The ChemkinParser uses the Java Scanner to parse the CHEMKIN file. Furthermore the
single parts of the file are converted to appropriate objects as outlined in the listing
above. Molecule species are written as chemical formulae in the file and therefore have
to be converted to SMILES strings before being able to create CDK IMolecule objects.
The conversion to SMILES strings is again done using the CACTUS web service from
the National Cancer Institute NCI.

©
public class ChemkinParser
{

public ChemkinFile Parse ( S t r ing f i l ename ) throws Exception

private IMolecu le getMoleculeFromSmiles ( S t r ing sm i l e s ) ;
private St r ing getSmilesFromChemFormula ( St r ing chemFormula ) ;

}
ª

With the test application ChemkinTestApp the usage of the ChemkinLib is demon-
strated by parsing a CHEMKIN input file and writing one file containing all molecule
species in terms of SMILES strings and one file containing the string representations of
all reactions as output.

74



5.3.2. Chemkin GML Generator

The Chemkin GML Generator is a Perl script that takes an input file that was created
with the previously mentioned ChemkinTestApp and generates GML graph rewrite rules
from the reactions. Because the input file was originally generated from some CHEMKIN
file this script is also named after CHEMKIN. The listing below show an example line
in such an input file:

©
[H] + [H]C( [H])=C=O <−> [H ] [C ] ( [H ] ) [H] + CO : : 1.511104421141E−11 J/mole

ª
After parsing the separate molecule SMILES strings and parsing them to molecule ob-
jects, a reaction object is created, for which the atom-atom mapping is calculated.

©
my $ r e a c t i on = Chemistry : : ReactionGrammar : : Reaction−>new(

educts => \@educts ,
products => \@products

) ;

my $mapper = new Chemistry : : ReactionGrammar : : Mapper : : CSL ( ) ;
$ r e a c t i on = $mapper−>map( $ r e a c t i on ) ;

ª
After the atom mapping information is stored at the reaction object, the rewrite rule
can be derived from the latter. The rewrite rule is than written in GML format to the
output file.

©
my $gml = RewriteRule−>new from react ion ( $ r e a c t i on ) ;
# expand ru l e context to conta in a l l atoms o f the r e a c t i on
$gml−>expand ru l e s ;

ª

5.3.3. PostAnalyze

PostAnalyze is a Java tool for the graphical analysis of results of a StochGraphLab run.
It parses an output file of the StochGraphLab application and visualizes the simulated
reaction networks as substrate graphs. Molecule species can be depicted as SMILES
strings or molecule graphs. Besides some different graph/tree layouts the simulated con-
centration of a species and the reaction rate constants of the networks reactions can be
displayed additionally.

PostAnalyze is a Java SWING application and uses the CDK library [53] for pars-
ing SMILES strings, the JChemPaint library [56] for generating molecule graphs, the
JUNG library [55] for visualizing graphs/trees and the FreeHEP VectorGraphics library
[57] for exporting those graphs in various formats. A detailed description of the usage
of PostAnalyze and the handling in the user interface is given in appendix B.
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Because a StochGraphLab run produces possibly many iterations during a reaction
network generation, PostAnalyze reads every iteration separately and therefore holds a
separate graph for each iteration. In the graphical user interface of PostAnalyze each
iteration of the network simulation can be displayed extra.

©
// c r ea t e a new JUNG graph ob j e c t
// v e r t i c e s and edges are o f type St r ing
Graph<Str ing , Str ing> g =

new DirectedSparseMult igraph<Str ing , Str ing >() ;
. . .
g . addVertex ( r eac tant ) ;
g . addVertex ( product ) ;
g . addEdge ( r e a c t i o n I d e n t i f i e r , reactant , product ) ;

ª
A JUNG graph is eventually displayed by creating a Layout<Vertex, Edge> object with
the particular graph and further creating a VisualizationViewer<Vertex, Edge> object
with the layout object. Layout<Vertex, Edge> only defines an interface and there-
fore has to be instantiated using some specific layout class such as CircleLayout or
RadialTreeLayout.

©
Layout<Str ing , Str ing> l ayout =

new Circ leLayout<Str ing , Str ing >(g ) ;
V i sua l i z a t i onVi ewer vv = new Visua l i za t i onVi ewer ( layout ) ;

ª
The purpose of the VisualizationViewer<Vertex, Edge> object is the actual delineation
of the graph and furthermore provides functionalities for fine adjustments, labeling the
graph, scaling and user interactions.

Beside the SMILES string representation of the molecule species in the network graph,
PostAnalyze is able to depict species as molecule graph. This molecule graph is created
using the JChemPaint library [56].

©
private stat ic Icon getMoleculeIconFromSmiles ( S t r ing smi )
{

IMolecu le mol = null ;
Smi l e sParse r sp = new Smi l e sParse r ( . . . ) ;
mol = sp . par seSmi l e s ( smi ) ;
Image image = new BufferedImage ( . . . ) ;
Graphics2D g2 = ( Graphics2D ) image . getGraphics ( ) ;
StructureDiagramGenerator sdg = new StructureDiagramGenerator ( ) ;
Renderer r ende re r = new Renderer ( . . . ) ; . . .
IMolecu leSet molset = new MoleculeSet ( ) . addMolecule (mol ) ; . . .
r ende re r . pa intMolecu leSet ( molset , new AWTDrawVisitor ( g2 ) ) ;
return new LayeredIcon ( image ) ;

}
ª
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6. Results

6.1. Stochastic simulation

Before running stochastic simulations of whole reaction networks within our application
StochGraphLab, we wanted to verify the stochastic simulator of the StochKit library [24].
Therefore we utilized the Discrete Stochastic Models Test Suit DSMTS [19]. Because of
the probabilistic nature of stochastic approaches, testing them is so much the harder,
since two identical simulators will never produce exactly the same set of results and
exact solutions can only be calculated for very small reaction sets. Thus the only sensible
method is to run the simulation lots of times and check the correctness of the distribution
of the outcomes. The DSMTS contains several documented and well-defined test models.
Each test model consists of a description in the SBML format, CSV files for mean values
and standard deviations of the simulation results and plots of the latter against time.
The following two figures describe the positive verification by means of a Dimerisation
model and an Immigration-Death model.
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Figure 41: This dimerisation
process is denoted by species
P and P2. The dimerisation
reaction 2P → P2 has rate
parameter 0.001. The dis-
sociation reaction P2 → 2P
has rate parameter 0.01.
The colored lines show the
mean values of 1000 runs
and the black error bars
show the mean values and
standard deviations of the
DSMTS reference.

Both verification attempts resulted in simulated mean values that are within the ref-
erence distribution proposed by the DSMTS. The particular test models were chosen to
cover both, some quite difficult process involving two species (the dimerisation process)
and a not less interesting process because of the statistical spread of the simulation
results (the immigration-death process).
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6.2. Networks

In this chapter we describe the chemical reaction networks we simulated with our
StochGraphLab application. These networks were used to test and successfully demon-
strate our approach for a reaction network generator.

For all examined reaction networks the intra-molecular application of graph rewrite
rules was allowed for reaction generation. Furthermore the verbosity level of StochGraphLab
was set to at least three, in order to produce usable output for the PostAnalyze tool.
Moreover the GML rewrite rules for each reaction network are listed in appendix C.

6.2.1. Diels-Alder

The Diels-Alder reaction is an organic cycloaddition between a conjugate diene and a
substituted alkene and is named after Otto P.H. Diels and Kurt Alder [15]. As the cyclic
product of this reaction also contains a double bond, it can server further as alkene like
reactant. This repetitive character of the Diels-Alder reaction is the crucial factor for
building up a reaction network on its mechanism. The reaction mechanism requires very
little energy to create a cyclohexene ring, which is very useful in many other organic
reactions. The diene component in the reaction can be open-chain or cyclic with the
only limitation that it must be able to exist in the cis-conformation. This is against the
normal tendency of two double bonds to arrange themselves as far away from each other
as possible.

Below we describe simulation results of a reaction network starting with the two
reactants CC=C and C=C(C)C=C. The simulation command for the first depiction in
figure 43 is
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StochGraphLab -rules=da rule.gml -smiles=da1.smi -verbose=3

-pruneMaxMolSize=400 -autoScale -pruneConcThreshold=0.0001

whereas parameter pruneMaxMolSize limits the molecular mass of involved molecule
species to 400 amu and pruneConcThreshold limits the concentration of species in the
network to at least 0.0001.

Figure 43: Simulation of a Diels-Alder reaction network. Starting with two molecule
species this network soon stabilizes at six species because of the relative high concentra-
tion threshold.

Figure 44: Iteration two of a simulation run with higher concentration threshold.
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Both figures 44 and 45 are different depictions of the same iteration and the same
simulation run. Only the representation of the molecules changes between a molecular
graph and a colored circle proportionally indicating the simulated species concentration.
The command can be given as

StochGraphLab -rules=da rule.gml -smiles=da1.smi -verbose=3

-pruneMaxMolSize=400 -autoScale -pruneConcThreshold=0.000001

which simply sets a higher concentration threshold for pruning the reaction network.
The obvious effect is, that the number of species in the stabilized network doubles to
twelve. By setting parameter autoScale the species concentrations are scaled after each
simulation of the network dynamics such that the highest concentration is 1.0. All figures
of the Diels-Alder reaction network also outline the particular reaction rate constant for
each reaction.

Figure 45: Depicting molecule species as colored circles. Fill color opacity and circle
radius are linear proportional to the species concentration.

6.2.2. Formose reaction

Formose is an alloy of various sugar molecules that arises through self-condensation of
formaldehyde on basic catalysts [46]. Due to the capability of the formose reaction to
establish an auto-catalytic cycle, it is supposed to have played an important role in
the emergence of the first biomolecules [3] and might therefore be a candidate for the
origin of life scenario. The formose reaction also explains parts of the path from simple
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formaldehyde to complex sugars like ribose and from there to RNA. Because of this
potential it is also a perfect candidate to be tested and simulated with our application
StochGraphLab.

To simulate a reaction network on base of the formose reaction we first picked the sep-
arate reaction mechanisms (listed in appendix C), contributing to the complete formose
reaction, from literature and derived graph rewrite rules from them. Some reactions like
the Keto Enol tautomerism are rather unspecific and do not require special constraints
in the graph transformation or an almost completely expanded rule context. However,
there are also reactions like the Cannizzaro disproportionation, which occur only un-
der specific circumstances and therefore need quite specific rewrite constraints and an
accordingly specific rule context.

In the following we describe simulation results of a reaction network starting with the
two reactants formaldehyde [H]C(=O)[H] and water [H]O[H]. The simulation command
for the first depiction is

StochGraphLab -rules=formose.reaction.allHs.in.gml

-smiles=formose.educts.smi -verbose=3 -pruneMaxMolSize=200 -noSimulation
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Figure 46: Iteration 5 of the simulated formose reaction network. The start molecules
are emphasized by red circles. The blue circles mark two sugars (hexose, pentose) that
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were generated during the simulation, which shows, that the mechanism of the formose
reaction is implemented and covered correctly, since sugars represent an observed and
predicted outcome of the reaction. There are no reaction rates or species concentrations
because of parameter noSimulation.

The next figure shows reaction rate constants, achieved by the simulation command

StochGraphLab -rules=formose.reaction.allHs.in.gml

-smiles=formose.educts.smi -verbose=3 -pruneMaxMolSize=200 -autoScale
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Figure 47: Simulation of the network kinetics of the formose reaction network.

Besides the kinetic simulation we also analyzed reaction cycles in the formose reac-
tion network. With the following command cycles of path length 5 to 6 were searched
in the directed network substrate graph:

StochGraphLab -rules=formose.reaction.allHs.in.gml

-smiles=formose.educts.smi -verbose=3 -pruneMaxMolSize=200 -noSimulation

-anaCycles=1 -minCycleSize=5

In iteration 5 of the network generation procedure a few cycles of length 5 to 6 were
found. The following figure shows one of those, i.e. the famous auto-catalytic cycle of
the formose reaction found in nature and reproduced in experiments. This again shows
the capability of simulating reasonable reaction networks within our application.
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Figure 48: A cyclic reaction path found in the simulated Formose reaction network.

All simulations of the Formose reaction were parameterized for pruning molecule
species with more than 200 atomic mass units amu, because larger molecules are not
supposed to play a role in scenarios concerning the origin of life.

6.3. Restrictions & Comments

In addition to the results we want to list some restrictions and drawbacks of the current
implementation of StochGraphLab and its environment:

? Chemical radicals are generally not supported by the underlying libraries and can
therefore not be used in reaction networks. As a result, for instance, combustion
reactions and atmospheric high energy reactions can not yet be processed by our
application.

? The imaginary transition state ITS, calculated by the graph grammar library GGL,
in some cases can not be used for the reaction rate calculation because the hydro-
gen count in the ITS is not necessarily equal to the number of hydrogens in the
reactants or products. Generally the transition state is a rather blurred state on
the chemical transition from educts to products, which means there might be bonds
that are already broken or bonds that are even established although in the prod-
uct molecules the bonds are again differently formed and positioned. However, the
quantum mechanics program jaguar (appendix D) can only handle equal atom
numbers on educts site and products site as well as in the transition state and its
calculations will not converge otherwise. To circumvent this difficulty we calculate
an own transition state within the reaction rate calculation or let jaguar estimate
it, which takes longer in any case.

? Using StochKit as stochastic simulation toolkit we soon realized a missing fea-
ture. Normally one has to exactly tell StochKit the time the simulation should
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end. However, our use cases are to create possibly new reaction networks and for
unknown scenarios it is not realistic to estimate or guess the time when further
simulation can be stopped. It is just the equilibrium in the molecule network we
are interested in when asking for the molecules concentration distribution. As it is
not feasible to setup an arbitrarily high end time for every simulation just to make
sure every imaginable reaction network reaches its steady state we contacted the
developers group of StochKit. Thereby we learned about a new version StochKit2
of which the release date was too far away. Thus we implemented an own heuristic
within StochKit to guess the quasi equilibrium of the simulated reaction network.
In the meanwhile a beta version of StochKit2 was released in March 2010 but it still
misses the desired feature so a switch-over to the new version was not necessary.

? Molecule species in the reaction network might be dissipated to a large extent
for producing other molecule species and therefore reach only low concentrations
in the simulation of network dynamics. Furthermore this may lead to expelling
those species from the network according to network pruning although they have
doubtlessly been important and maybe even required for the production of other
species. To resolve such wrong decisions in the algorithm, new and additional
pruning strategies should be investigated and implemented.

? The temperature at which a particular chemical reaction takes place is closely
connected to the rate constant, as deduced by the Arrhenius equation and the
Transition State Theory. Nevertheless our quantum mechanics calculation pro-
gram jaguar is currently not able to optimize molecule structures for a given
temperature but only for the default of 300 Kelvin. This implies that further also
the Gibbs energy of the involved molecules is always determined regardless of the
temperature.
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7. Conclusion

7.1. Summary

As mentioned in the results chapter, the presented approach for generating chemical
reaction networks using graph transformations and stochastic simulations is able to
simulate chemically reasonable results.

At the beginning the Diels-Alder reaction network was used to test the mechanisms
for expanding the network, simulating the dynamic and the various pruning strategies,
since the part of the graph transformation is well-understood for the Diels-Alder reac-
tion. When diverse errors were fixed and the stochastic simulation was enhanced to
detect equilibrium states, we proceeded to derive graph rewrite rules for further reaction
networks. As we are especially interested in prebiotic chemistries, we have chosen the
Formose reaction, which resulted in successfully reproducing important outcomes such
as hexose and pentose sugars and the formation of reaction cycles within the reaction
network.

Nevertheless, there are enough investigations we did not manage to carry out. There-
fore we dedicate the next chapter to ideas and suggestions for future work.

7.2. Outlook

The following list contains possible improvements and ideas we want to suggest for
further work on this topic:

? Because of the inherent probabilistic nature of stochastic simulators, their results
are the better the more often the simulation is run. To speed up a simulation the
separate runs should therefore be parallelized. A computer component capable of
running many computations in parallel is the graphics processing unit GPU. The
stochastic simulation library StochKit we are using has already been tested on
a graphics board [23]. Still the developed code for the tests on the GPU is not
available as a library.

? At the moment the StochKit library is not able to detect steady-state conditions in
the simulated reaction network, which is why we implemented our own heuristic.
Anyhow a well-founded strategy for stopping the stochastic simulation on reaching
equilibrium would be appreciated.

? A complete generation and simulation of a reaction network consists of one fixed
set of rewrite rules, passed to the StochGraphLab application. To simulate even
more realistic and natural conditions concerning evolutionary aspects, the reac-
tion network should be scanned for new rewrite rules, applicable to the contained
molecule species, after each iteration to extend the set of known rules. This could
be done for instance by considering and examining overlapping molecule orbitals
when simulating the collision of two or more species, i.e. testing a possible reaction.
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? Present pruning strategies consider only the species concentration, which might be
a problem as mentioned in section 6.3. Therefore new pruning strategies could be
implemented, e.g. to consider reaction rates leading to higher or lower expressed
molecule species.

? Considering the current capability of analyzing cycles in reaction paths a new mode
for network simulation could be developed. In this mode reaction rates are only
calculated for reactions participating in a cycle. Furthermore only the dynamic of
these cycles would have to be simulated.

? Cycle analysis in the reaction network currently uses a brute force algorithm. Of
course a more sophisticated subgraph isomorphism algorithm would make sense.

? Currently the reaction rate calculation server contains both, the TCP/IP server
and the actual rate calculation. For more general usage a server farm for parallel
rate calculation and one TCP server for communicating with client applications
and further dispatching the calculation jobs to the server farm.

? Although the reaction rate calculation is rather robust in terms of receiving SMILES
strings of various dialects, fetching the structural data from the CACTUS web ser-
vice and deriving the transition state of a reaction, there are still reactions resulting
in a rate of 0.0. In most cases this is due to an error in jaguar when optimizing
the molecule geometry.

? Furthermore the reaction rate calculation should be verified and calibrated utilizing
measured reaction rates of physicochemical experiments.

? As mentioned in the introduction of this work Eschenmoser proposed some reaction
mechanisms and networks that are supposed to form auto-catalytic reaction paths
and to potentially prebiotic character [3]. For detailed modeling of the proposed
reactions an own diploma thesis could be announced for some organic chemist with
sophisticated insights in prebiotic chemistries.
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A. StochGraphLab usage

The usage of our main application StochGraphLab is as follows:

StochGraphLab -rules=... -smiles=... [...optional parameters]

Parameters rules and smiles are required and define the rewrite rule set and the set
of molecule species respectively. Both parameters take a colon ’:’ separated list of file
names. In the following the optional parameters are listed and described briefly:

pruneConcThreshold Removes species with smaller concentration than threshold
from the network.
type=double

pruneMaxNetworkSize Maximum network size. Species with smallest concentra-
tion are removed from the network.
type=double

pruneMaxMolSize Removes species with higher molecule mass than the maximum
from the network (in atomic mass unit amu).
type=double

host TCP host of reaction rate calculation server.
type=string

port TCP port of reaction rate calculation server.
type=integer

verbose Set verbosity level for outputs: 0 = off, 1 = output every iteration, 2 =
output simulation input network, 3 = output reactions, 4 = output Reaction rate
strings, 5 = output simulation input stoichiometry matrix, 6 = output propensity
functions.
type=integer

out Output file name or STDOUT, if not given.
type=string

rates A ’:’ separated list of file names containing reaction rates per GML rule ID.
type=string

simiter Number of stochastic simulations to run in each iteration of the network
generation. 1 if not given.
type=string

temp Surrounding temperature of the reaction network or 298.15 Kelvin if not
given.
type=double
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iter Number of network generation iterations.
type=integer

simdetailout Output file name to write history of stochastic simulations, i.e. the
separate trajectories.
type=string

initconc A ’:’ separated list of file names containing initial concentrations for
specified molecule species.
type=string

noRuleCheck Do not check the consistency of the rewrite rules.
type=boolean

autoScale Apply automatic scaling on every species’ concentration (highest con-
centration will be 1.0).
type=boolean

noSimulation Do not actually simulate the reaction network.
type=boolean

anaCycles Analyze reaction network for cycles: 1 = use directed graphs, 2 = use
undirected graph.
type=integer

minCycleSize Minimum size of cycles to find or 3, if not given.
type=integer

maxCycleSize Maximum size of cycles to find or 6, if not given.
type=integer

Reaction Rate Calculation Server

To start a reaction rate calculation server on a machine, simply the Perl script calc rate.pl

has to be started. If all output and error messages should be written to some log file and
the process should be started in the background, the following command is appropriate:

perl calc rate.pl > logfile.log 2>&1 &
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B. Tools usage

ChemkinLib test application

The usage of the test application for the CHEMKIN II library is

ChemkinTestApp.jar input file smiles educts reactions output

whereas the input file is a network defined in the CHEMKIN II format and smiles educts

and reactions output are the output files, extracted from the network definition.

Chemkin GML Generator

As mentioned in chapter 5.3.2 the GML generator takes a reactions input file, gener-
ated with the ChemkinTestApp, and creates GML graph rewrite rules from the given
reactions. The usage of the Perl script is

perl chemkin rulegen.pl inputfile

which creates the two output files inputfile.gml containing the GML rules and inputfile.

rates.txt containing the reaction rate constants for every rule parsed from the CHEMKIN
input file.

PostAnalyze

The usage of the PostAnalyze tool is as follows:

PostAnalyze input file [Smiles|Graphs] [Circle|FR|Tree] [molecule size]

The input file is some output file of the StochGraphLab with a verbosity level of at least
3. Second parameter is the representation of the molecule species. Third parameter is
the network graph layout, where FR means Fruchterman-Reingold. The forth parameter
is the size of the molecular graphs in pixel - only considered if molecules are represented
as graphs.

Once the graphical user interface of PostAnalyze has started, following user interac-
tions are possible:

� Menu Graphs: Select a particular iteration of the network simulation to display

� Menu Tools: Switch on/off labels, Zooming, Export to graphics file

� Ctrl+A: select all vertices

� Mouse click: pick or move vertices, press Shift for multi select, press Ctrl to fix
the view

� Mouse wheel and +/- keys for scrolling
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C. Rewrite rules

Diels-Alder
©

r u l e [
ru leID ” D i e l s Alder r e a c t i on ”
context [

node [ id 0 l a b e l ”C” ]
node [ id 1 l a b e l ”C” ]
node [ id 2 l a b e l ”C” ]
node [ id 3 l a b e l ”C” ]
node [ id 4 l a b e l ”C” ]
node [ id 5 l a b e l ”C” ]

]
l e f t [

edge [ source 1 t a r g e t 2 l a b e l ”=” ]
edge [ source 4 t a r g e t 5 l a b e l ”−” ]
edge [ source 3 t a r g e t 4 l a b e l ”=” ]
edge [ source 0 t a r g e t 5 l a b e l ”=” ]

]
r i g h t [

edge [ source 0 t a r g e t 1 l a b e l ”−” ]
edge [ source 1 t a r g e t 2 l a b e l ”−” ]
edge [ source 2 t a r g e t 3 l a b e l ”−” ]
edge [ source 3 t a r g e t 4 l a b e l ”−” ]
edge [ source 4 t a r g e t 5 l a b e l ”=” ]
edge [ source 5 t a r g e t 0 l a b e l ”−” ]

]
]

ª

Formose reaction

If we printed all fourteen GML rewrite rules of the formose rule set, it would fill a couple
of pages. Thus we refer the committed reader to the provided source code, in which
the rule set for the formose reaction network can be found in the file /test/networks/

formose/formose.reaction.allHs.in.gml.

Nevertheless we want to list the reaction mechanisms, we derived the rule set from,
in order to simulate the formose reaction network.

� Cannizzaro disproportionation

� Keto Enol tautomerism and reverse mechanism

� Aldol addition and reverse mechanism

� Aldose Ketose isomerization and reverse mechanism

� Pentose cyclization

� Hexose cyclization
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D. Jaguar 7.5

Here we describe the various input files used for the calculations with jaguar 7.5 [26].

Transition state calculation

To determine or optimize the transition state of a reaction the listing below shows an
example input file. Parameter basis is always set to basis set 6-31G* in our calcula-
tions. Parameter molchg is the molecules charge, igeopt has to be 2 for a transition
state search, iqst denotes the search method and is set to 1, because we can provide the
structural data for reactants, products and even for a guess of a transition state. The
maximum number of optimization iterations is defined by maxitg. If we do have a tran-
sition state1, we can write all three zmat-sections, whereas zmat contains the transition
state, zmat2 the reactants and zmat3 the products. If we do not know the transition
state reactants and products are written to sections zmat and zmat2 respectively.

©
&gen
ba s i s=6−31g*
molchg=<i n t ege r >
i g eopt=2
i q s t=1
maxitg=10
&
&zmat
H1 3.0739 0 .1550 0 .0000
H2 2.0000 0 .1550 0 .0000
O3 2.5369 −0.1550 0 .0000
&
&zmat2
. . .
&
&zmat3
. . .
&

ª

Geometry optimization

To optimize the geometry of particular molecules the options in the gen-section have
to be adapted as listed below. Parameter igeopt is set to 1 for only optimizing the
structural data of one set of molecules. The latter is declared within the zmat section.

©
&gen
ba s i s=6−31g*
molchg=<i n t ege r >
i g eopt=1
maxitg=10
&
&zmat
. . .
&

ª
1To have a transition state here always means to have at least a guess for it.
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Energy Calculation

For the calculation of the Gibbs free energy of some molecules the input file has to
declare following parameters:

igeopt is set to 0, since the geometry has been optimized in previous jobs

ifreq set to 1 activates the calculation of vibrational frequencies, needed for the
energy calculation

scalfr is a scale factor for the frequency calculations (value 0.8953 for basis set
6-31G* was taken from [26])

isolv is 0 so jaguar performs the calculations in the gas phase

eunit = 2 sets the energy unit to kJ/mol

The structural data is again given in the single zmat section.

©
&gen
ba s i s=6−31g*
molchg=<i n t ege r >
i g eopt=0
i f r e q=1
s c a l f r =0.8953
i s o l v=0
eun i t=2
&
&zmat
. . .
&

ª
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E. Access to our software

All software developed and implemented within this thesis is available under the lesser
GNU LGPL software license and can be accessed through the following git repository
stored at the TBI web site of the University of Vienna:
http://www.tbi.univie.ac.at/~dhoegerl/Diplomarbeit/Software/repository

You can use the following command to check out from our repository:
git clone ssh://user@repository

It is also available as tarball:
http://www.tbi.univie.ac.at/~dhoegerl/StochGraphLab.tar.gz
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